Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa R. Cruz is active.

Publication


Featured researches published by Melissa R. Cruz.


PLOS Pathogens | 2011

Ce-Duox1/BLI-3 Generated Reactive Oxygen Species Trigger Protective SKN-1 Activity via p38 MAPK Signaling during Infection in C. elegans

Ransome van der Hoeven; Katie C. McCallum; Melissa R. Cruz; Danielle A. Garsin

Infected animals will produce reactive oxygen species (ROS) and other inflammatory molecules that help fight pathogens, but can inadvertently damage host tissue. Therefore specific responses, which protect and repair against the collateral damage caused by the immune response, are critical for successfully surviving pathogen attack. We previously demonstrated that ROS are generated during infection in the model host Caenorhabditis elegans by the dual oxidase Ce-Duox1/BLI-3. Herein, an important connection between ROS generation by Ce-Duox1/BLI-3 and upregulation of a protective transcriptional response by SKN-1 is established in the context of infection. SKN-1 is an ortholog of the mammalian Nrf transcription factors and has previously been documented to promote survival, following oxidative stress, by upregulating genes involved in the detoxification of ROS and other reactive compounds. Using qRT-PCR, transcriptional reporter fusions, and a translational fusion, SKN-1 is shown to become highly active in the C. elegans intestine upon exposure to the human bacterial pathogens, Enterococcus faecalis and Pseudomonas aeruginosa. Activation is dependent on the overall pathogenicity of the bacterium, demonstrated by a weakened response observed in attenuated mutants of these pathogens. Previous work demonstrated a role for p38 MAPK signaling both in pathogen resistance and in activating SKN-1 upon exposure to chemically induced oxidative stress. We show that NSY-1, SEK-1 and PMK-1 are also required for SKN-1 activity during infection. Evidence is also presented that the ROS produced by Ce-Duox1/BLI-3 is the source of SKN-1 activation via p38 MAPK signaling during infection. Finally, for the first time, SKN-1 activity is shown to be protective during infection; loss of skn-1 decreases resistance, whereas increasing SKN-1 activity augments resistance to pathogen. Overall, a model is presented in which ROS generation by Ce-Duox1/BLI-3 activates a protective SKN-1 response via p38 MAPK signaling.


Infection and Immunity | 2013

Enterococcus faecalis Inhibits Hyphal Morphogenesis and Virulence of Candida albicans

Melissa R. Cruz; Carrie E. Graham; Bryce C. Gagliano; Michael C. Lorenz; Danielle A. Garsin

ABSTRACT The Gram-positive bacterium Enterococcus faecalis and the fungus Candida albicans are both found as commensals in many of the same niches of the human body, such as the oral cavity and gastrointestinal (GI) tract. However, both are opportunistic pathogens and have frequently been found to be coconstituents of polymicrobial infections. Despite these features in common, there has been little investigation into whether these microbes affect one another in a biologically significant manner. Using a Caenorhabditis elegans model of polymicrobial infection, we discovered that E. faecalis and C. albicans negatively impact each others virulence. Much of the negative effect of E. faecalis on C. albicans was due to the inhibition of C. albicans hyphal morphogenesis, a developmental program crucial to C. albicans pathogenicity. We discovered that the inhibition was partially dependent on the Fsr quorum-sensing system, a major regulator of virulence in E. faecalis. Specifically, two proteases regulated by Fsr, GelE and SerE, were partially required. Further characterization of the inhibitory signal revealed that it is secreted into the supernatant, is heat resistant, and is between 3 and 10 kDa. The substance was also shown to inhibit C. albicans filamentation in the context of an in vitro biofilm. Finally, a screen of an E. faecalis transposon mutant library identified other genes required for suppression of C. albicans hyphal formation. Overall, we demonstrate a biologically relevant interaction between two clinically important microbes that could affect treatment strategies as well as impact our understanding of interkingdom signaling and sensing in the human-associated microbiome.


Science | 2014

A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator

Sruti DebRoy; Margo P. Gebbie; Arati Ramesh; Jonathan R. Goodson; Melissa R. Cruz; Ambro van Hoof; Wade C. Winkler; Danielle A. Garsin

A dual-action RNA switch for expression Riboswitches are short segments of RNA that bind small molecules and switch between two different conformations, thereby regulating gene expression (see the Perspective by Chen and Gottesman). DebRoy et al. and Mellin et al. find a new class of riboswitches—in two different species of bacteria—that are both part of and regulate the production of a noncoding RNA. Each riboswitch ensures that a particular metabolic pathway is only activated in the presence of an essential small-molecule cofactor. In the absence of the cofactor, the full-length non-coding RNA is made and binds a regulator protein, preventing the regulator protein from inappropriately activating the metabolic pathway. Science, this issue p. 937 and p. 940; see also p. 876 A riboswitch is both part of, and regulates the activity of, a small noncoding regulatory RNA. [Also see Perspective by Chen and Gottesman] The ethanolamine utilization (eut) locus of Enterococcus faecalis, containing at least 19 genes distributed over four polycistronic messenger RNAs, appears to be regulated by a single adenosyl cobalamine (AdoCbl)–responsive riboswitch. We report that the AdoCbl-binding riboswitch is part of a small, trans-acting RNA, EutX, which additionally contains a dual-hairpin substrate for the RNA binding–response regulator, EutV. In the absence of AdoCbl, EutX uses this structure to sequester EutV. EutV is known to regulate the eut messenger RNAs by binding dual-hairpin structures that overlap terminators and thus prevent transcription termination. In the presence of AdoCbl, EutV cannot bind to EutX and, instead, causes transcriptional read through of multiple eut genes. This work introduces riboswitch-mediated control of protein sequestration as a posttranscriptional mechanism to coordinately regulate gene expression.


The Journal of Infectious Diseases | 2015

A liaR Deletion Restores Susceptibility to Daptomycin and Antimicrobial Peptides in Multidrug-Resistant Enterococcus faecalis

Jinnethe Reyes; Diana Panesso; Truc T. Tran; Nagendra N. Mishra; Melissa R. Cruz; Jose M. Munita; Kavindra V. Singh; Michael R. Yeaman; Barbara E. Murray; Yousif Shamoo; Danielle A. Garsin; Arnold S. Bayer; Cesar A. Arias

Daptomycin is a lipopeptide antibiotic that is used clinically against many gram-positive bacterial pathogens and is considered a key frontline bactericidal antibiotic to treat multidrug-resistant enterococci. Emergence of daptomycin resistance during therapy of serious enterococcal infections is a major clinical issue. In this work, we show that deletion of the gene encoding the response regulator, LiaR (a member of the LiaFSR system that controls cell envelope homeostasis), from daptomycin-resistant Enterococcus faecalis not only reversed resistance to 2 clinically available cell membrane-targeting antimicrobials (daptomycin and telavancin), but also resulted in hypersusceptibility to these antibiotics and to a variety of antimicrobial peptides of diverse origin and with different mechanisms of action. The changes in susceptibility to these antibiotics and antimicrobial peptides correlated with in vivo attenuation in a Caenorhabditis elegans model. Mechanistically, deletion of liaR altered the localization of cardiolipin microdomains in the cell membrane. Our findings suggest that LiaR is a master regulator of the enterococcal cell membrane response to diverse antimicrobial agents and peptides; as such, LiaR represents a novel target to restore the activity of clinically useful antimicrobials against these organisms and, potentially, increase susceptibility to endogenous antimicrobial peptides.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans

Carrie E. Graham; Melissa R. Cruz; Danielle A. Garsin; Michael C. Lorenz

Significance Hospitalized patients are susceptible to serious infections that are rarely encountered by healthy people. Two of the most problematic causes are Enterococcus faecalis and Candida albicans, a bacterium and fungus, respectively. Both are members of our normal microbial communities, but cause significant mortality in immunocompromised individuals. The formation of biofilms—microbial communities that grow on biotic or artificial surfaces—is a common feature of these infections and presents a formidable barrier to their treatment. We show here that E. faecalis produces a small protein that is a potent inhibitor of the ability of C. albicans to form biofilms and reduces fungal virulence in several models, raising the possibility that it might be developed as an antifungal agent. Enterococcus faecalis, a Gram-positive bacterium, and Candida albicans, a fungus, occupy overlapping niches as ubiquitous constituents of the gastrointestinal and oral microbiome. Both species also are among the most important and problematic, opportunistic nosocomial pathogens. Surprisingly, these two species antagonize each other’s virulence in both nematode infection and in vitro biofilm models. We report here the identification of the E. faecalis bacteriocin, EntV, produced from the entV (ef1097) locus, as both necessary and sufficient for the reduction of C. albicans virulence and biofilm formation through the inhibition of hyphal formation, a critical virulence trait. A synthetic version of the mature 68-aa peptide potently blocks biofilm development on solid substrates in multiple media conditions and disrupts preformed biofilms, which are resistant to current antifungal agents. EntV68 is protective in three fungal infection models at nanomolar or lower concentrations. First, nematodes treated with the peptide at 0.1 nM are completely resistant to killing by C. albicans. The peptide also protects macrophages and augments their antifungal activity. Finally, EntV68 reduces epithelial invasion, inflammation, and fungal burden in a murine model of oropharyngeal candidiasis. In all three models, the peptide greatly reduces the number of fungal cells present in the hyphal form. Despite these profound effects, EntV68 has no effect on C. albicans viability, even in the presence of significant host-mimicking stresses. These findings demonstrate that EntV has potential as an antifungal agent that targets virulence rather than viability.


Molecular Microbiology | 2015

Enterococcus faecalis pCF10-encoded surface proteins PrgA, PrgB (aggregation substance) and PrgC contribute to plasmid transfer, biofilm formation and virulence

Minny Bhatty; Melissa R. Cruz; Kristi L. Frank; Jenny A. Laverde Gomez; Fernando Andrade; Danielle A. Garsin; Gary M. Dunny; Heidi B. Kaplan; Peter J. Christie

Enterococcus faecalis pCF10 transfers at high frequencies upon pheromone induction of the prgQ transfer operon. This operon codes for three cell wall‐anchored proteins – PrgA, PrgB (aggregation substance) and PrgC – and a type IV secretion system through which the plasmid is delivered to recipient cells. Here, we defined the contributions of the Prg surface proteins to plasmid transfer, biofilm formation and virulence using the Caenorhabditis elegans infection model. We report that a combination of PrgB and extracellular DNA (eDNA), but not PrgA or PrgC, was required for extensive cellular aggregation and pCF10 transfer at wild‐type frequencies. In addition to PrgB and eDNA, production of PrgA was necessary for extensive binding of enterococci to abiotic surfaces and development of robust biofilms. However, although PrgB is a known virulence factor in mammalian infection models, we determined that PrgA and PrgC, but not PrgB, were required for efficient killing in the worm infection model. We propose that the pheromone‐responsive, conjugative plasmids of E. faecalis have retained Prg‐like surface functions over evolutionary time for attachment, colonization and robust biofilm development. In natural settings, these biofilms are polymicrobial in composition and constitute optimal environments for signal exchange, mating pair formation and widespread lateral gene transfer.


Journal of Bacteriology | 2013

Library Screen Identifies Enterococcus faecalis CcpA, the Catabolite Control Protein A, as an Effector of Ace, a Collagen Adhesion Protein Linked to Virulence

Peng Gao; Kenneth L. Pinkston; Agathe Bourgogne; Melissa R. Cruz; Danielle A. Garsin; Barbara E. Murray; Barrett R. Harvey

The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis.


PLOS ONE | 2015

Localization of the Dual Oxidase BLI-3 and Characterization of Its NADPH Oxidase Domain during Infection of Caenorhabditis elegans.

Ransome van der Hoeven; Melissa R. Cruz; Violeta Chavez; Danielle A. Garsin

Dual oxidases (DUOX) are enzymes that contain an NADPH oxidase domain that produces hydrogen peroxide (H2O2) and a peroxidase domain that can utilize H2O2 to carry out a variety of reactions. The model organism Caenorhabditis elegans produces the DUOX, BLI-3, which has roles in both cuticle development and in protection against infection. In previous work, we demonstrated that while certain peroxidases were protective against the human bacterial pathogen Enterococcus faecalis, the peroxidase domain of BLI-3 was not, leading to the postulate that the NADPH oxidase domain is the basis for BLI-3’s protective effects. In this work, we show that a strain carrying a mutation in the NADPH oxidase domain of BLI-3, bli-3(im10), is more susceptible to E. faecalis and the human fungal pathogen Candida albicans. Additionally, less H2O2 is produced in response to pathogen using both an established Amplex Red assay and a strain of C. albicans, WT-OXYellow, which acts as a biosensor of reactive oxygen species (ROS). Finally, a C. elegans line containing a BLI-3::mCherry transgene was generated. Previous work suggested that BLI-3 is produced in the hypodermis and the intestine. Expression of the transgene was observed in both these tissues, and additionally in the pharynx. The amount and pattern of localization of BLI-3 did not change in response to pathogen exposure.


Physiological Reports | 2016

Indomethacin injury to the rat small intestine is dependent upon biliary secretion and is associated with overgrowth of enterococci

Sara Mayo; Ye K. Song; Melissa R. Cruz; Tri M. Phan; Kavindra V. Singh; Danielle A. Garsin; Barbara E. Murray; Elizabeth J. Dial; Lenard M. Lichtenberger

NSAID use is limited due to the drugs’ toxicity to the gastrointestinal mucosa, an action incompletely understood. Lower gut injury induced by NSAIDs is dependent on bile secretion and is reported to increase the growth of a number of bacterial species, including an enterococcal species, Enterococcus faecalis. This study examined the relationships between indomethacin (INDO)‐induced intestinal injury/bleeding, small bowel overgrowth (SBO) and dissemination of enterococci, and the contribution of bile secretion to these pathological responses. Rats received either a sham operation (SO) or bile duct ligation (BDL) prior to administration of two daily subcutaneous doses of saline or INDO, and 24 h later, biopsies of ileum and liver were collected for plating on selective bacterial media. Fecal hemoglobin (Hb) and blood hematocrit (Hct) were measured to assess intestinal bleeding. Of the four treatment groups, only SO/INDO rats experienced a significant 10‐ to 30‐fold increase in fecal Hb and reduction in Hct, indicating that BDL attenuated INDO‐induced intestinal injury/bleeding. Ileal enterococcal colony‐forming units were significantly increased (500‐ to 1000‐fold) in SO/INDO rats. Of all groups, only the SO/INDO rats demonstrated gut injury, and this was associated with enterococcal overgrowth of the gut and dissemination to the liver. We also demonstrated that INDO‐induced intestinal injury and E. faecalis overgrowth was independent of the route of administration of the drug, as similar findings were observed in rats orally dosed with the NSAID. Bile secretion plays an important role in INDO‐induced gut injury and appears to support enterococcal overgrowth of the intestine. NSAID‐induced enterococcal SBO may be involved either as a compensatory response to gut injury or with the pathogenic process itself and the subsequent development of sepsis.


Mbio | 2018

Loss of Ethanolamine Utilization in Enterococcus faecalis Increases Gastrointestinal Tract Colonization

Karan Gautam Kaval; Kavindra V. Singh; Melissa R. Cruz; Sruti DebRoy; Wade C. Winkler; Barbara E. Murray; Danielle A. Garsin

ABSTRACT Enterococcus faecalis is paradoxically a dangerous nosocomial pathogen and a normal constituent of the human gut microbiome, an environment rich in ethanolamine. E. faecalis carries the eut (ethanolamine utilization) genes, which enable the catabolism of ethanolamine (EA) as a valuable source of carbon and/or nitrogen. EA catabolism was previously shown to contribute to the colonization and growth of enteric pathogens, such as Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli (EHEC), in the gut environment. We tested the ability of eut mutants of E. faecalis to colonize the gut using a murine model of gastrointestinal (GI) tract competition and report the surprising observation that these mutants outcompete the wild-type strain. IMPORTANCE Some bacteria that are normal, harmless colonizers of the human body can cause disease in immunocompromised patients, particularly those that have been heavily treated with antibiotics. Therefore, it is important to understand the factors that promote or negate these organisms’ ability to colonize. Previously, ethanolamine, found in high concentrations in the GI tract, was shown to promote the colonization and growth of bacteria associated with food poisoning. Here, we report the surprising, opposite effect of ethanolamine utilization on the commensal colonizer E. faecalis, namely, that loss of this metabolic capacity made it a better colonizer. Some bacteria that are normal, harmless colonizers of the human body can cause disease in immunocompromised patients, particularly those that have been heavily treated with antibiotics. Therefore, it is important to understand the factors that promote or negate these organisms’ ability to colonize. Previously, ethanolamine, found in high concentrations in the GI tract, was shown to promote the colonization and growth of bacteria associated with food poisoning. Here, we report the surprising, opposite effect of ethanolamine utilization on the commensal colonizer E. faecalis, namely, that loss of this metabolic capacity made it a better colonizer.

Collaboration


Dive into the Melissa R. Cruz's collaboration.

Top Co-Authors

Avatar

Danielle A. Garsin

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Barbara E. Murray

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Kavindra V. Singh

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Carrie E. Graham

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Dial

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Lenard M. Lichtenberger

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Michael C. Lorenz

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Ransome van der Hoeven

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Sara Mayo

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Sruti DebRoy

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge