Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa S. Harris is active.

Publication


Featured researches published by Melissa S. Harris.


Journal of Medicinal Chemistry | 2008

Thermodynamic and Structure Guided Design of Statin Based Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

Ronald W. Sarver; Elizabeth Bills; Gary Louis Bolton; Larry D. Bratton; Nicole Caspers; James B. Dunbar; Melissa S. Harris; Richard Henry Hutchings; Robert Michael Kennedy; Scott D. Larsen; Alexander Pavlovsky; Jeffrey A. Pfefferkorn; Graeme Bainbridge

Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2-7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC 50 = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a Delta H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.


Proteins | 2009

Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

Holly Heaslet; Melissa S. Harris; Kelly Fahnoe; Ronald W. Sarver; Henry Putz; Jeanne Chang; Chakrapani Subramanyam; Gabriela Barreiro; J. Richard Miller

Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH‐dependent reduction of 5,6‐dihydrofolate to 5,6,7,8‐tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin‐resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram‐positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed “S1 DHFR.” To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild‐type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR. Proteins 2009.


Structure | 2013

Activation of AMP-Activated Protein Kinase Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry

Rachelle R. Landgraf; Devrishi Goswami; Francis Rajamohan; Melissa S. Harris; Matthew F. Calabrese; Lise R. Hoth; Rachelle Magyar; Bruce D. Pascal; Michael J. Chalmers; Scott A. Busby; Ravi G. Kurumbail; Patrick R. Griffin

AMP-activated protein kinase (AMPK) monitors cellular energy, regulates genes involved in ATP synthesis and consumption, and is allosterically activated by nucleotides and synthetic ligands. Analysis of the intact enzyme with hydrogen/deuterium exchange mass spectrometry reveals conformational perturbations of AMPK in response to binding of nucleotides, cyclodextrin, and a synthetic small molecule activator, A769662. Results from this analysis clearly show that binding of AMP leads to conformational changes primarily in the γ subunit of AMPK and subtle changes in the α and β subunits. In contrast, A769662 causes profound conformational changes in the glycogen binding module of the β subunit and in the kinase domain of the α subunit, suggesting that the molecular binding site of the latter resides between the α and β subunits. The distinct short- and long-range perturbations induced upon binding of AMP and A769662 suggest fundamentally different molecular mechanisms for activation of AMPK by these two ligands.


Biochimica et Biophysica Acta | 2010

Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors.

Zhigang Wang; William Watt; Nathan A. Brooks; Melissa S. Harris; Jan Urban; Douglas P. Boatman; Michael McMillan; Michael Kahn; Robert L. Heinrikson; Barry C. Finzel; Arthur J. Wittwer; James Robert Blinn; Satwik Kamtekar; Alfredo G. Tomasselli

Because of their central role in programmed cell death, the caspases are attractive targets for developing new therapeutics against cancer and autoimmunity, myocardial infarction and ischemic damage, and neurodegenerative diseases. We chose to target caspase-3, an executioner caspase, and caspase-8, an initiator caspase, based on the vast amount of information linking their functions to diseases. Through a structure-based drug design approach, a number of novel beta-strand peptidomimetic compounds were synthesized. Kinetic studies of caspase-3 and caspase-8 inhibition were carried out with these urazole ring-containing irreversible peptidomimetics and a known irreversible caspase inhibitor, Z-VAD-fmk. Using a stopped-flow fluorescence assay, we were able to determine individual kinetic parameters of caspase-3 and caspase-8 inhibition by these inhibitors. Z-VAD-fmk and the peptidomimetic inhibitors inhibit caspase-3 and caspase-8 via a three-step kinetic mechanism. Inhibition of both caspase-3 and caspase-8 by Z-VAD-fmk and of caspase-3 by the peptidomimetic inhibitors proceeds via two rapid equilibrium steps followed by a relatively fast inactivation step. However, caspase-8 inhibition by the peptidomimetics goes through a rapid equilibrium step, a slow-binding reversible step, and an extremely slow inactivation step. The crystal structures of inhibitor complexes of caspases-3 and -8 validate the design of the inhibitors by illustrating in detail how they mimic peptide substrates. One of the caspase-8 structures also shows binding at a secondary, allosteric site, providing a possible route to the development of noncovalent small molecule modulators of caspase activity.


Protein Expression and Purification | 2010

Escherichia coli expression, purification and characterization of functional full-length recombinant α2β2γ3 heterotrimeric complex of human AMP-activated protein kinase

Francis Rajamohan; Melissa S. Harris; Richard K. Frisbie; Lise R. Hoth; Kieran F. Geoghegan; James J. Valentine; Allan R. Reyes; James A. Landro; Xiayang Qiu; Ravi G. Kurumbail

AMP-activated protein kinase (AMPK) is an energy-sensing serine/threonine protein kinase that plays a central role in whole-body energy homeostasis. AMPK is a heterotrimeric enzyme with a catalytic (alpha) subunit and two regulatory (beta and gamma) subunits. The muscle-specific AMPK heterotrimeric complex (alpha2beta2gamma3) is involved in glucose and fat metabolism in skeletal muscle and therefore has emerged as an attractive target for drug development for diabetes and metabolic syndrome. To date, expression of recombinant full-length human AMPK alpha2beta2gamma3 has not been reported. Here we describe the expression, purification and biochemical characterization of functional full-length AMPK alpha2beta2gamma3 heterotrimeric complex using an Escherichia coli expression system. All three subunits of AMPK alpha2beta2gamma3 were transcribed as a single tricistronic transcript driven by the T7 RNA polymerase promoter, allowing spontaneous formation of the heterotrimeric complex in the bacterial cytosol. The self-assembled trimeric complex was purified from the cell lysate by nickel-ion chromatography using the hexahistidine tag fused exclusively at the N-terminus of the alpha 2 domain. The un-assembled beta 2 and gamma 3 domains were removed by extensive washing of the column. Further purification of the heterotrimer was performed using size exclusion chromatography. The final yield of the recombinant AMPK alpha2beta2gamma3 complex was 1.1mg/L culture in shaker flasks. The E. coli expressed enzyme was catalytically inactive after purification, but was activated in vitro by upstream kinases such as CaMKKbeta and LKB1. The kinase activity of activated AMPK alpha2beta2gamma3 complex was significantly enhanced by AMP (an allosteric activator) but not by thienopyridone A-769662, a known small molecule activator of AMPK. Mass spectrometric characterization of recombinant AMPK alpha2beta2gamma3 showed significant heterogeneity before and after activation that could potentially hamper crystallographic studies of this complex.


Protein Expression and Purification | 2010

Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain

Troii Hall; Thomas L. Emmons; Jill E. Chrencik; Jennifer A. Gormley; Robin A. Weinberg; Joseph W. Leone; Jeffrey L. Hirsch; Matthew Saabye; John F. Schindler; Jacqueline E. Day; Jennifer M. Williams; James R. Kiefer; Sandra Lightle; Melissa S. Harris; Siradanahalli Guru; H. David Fischer; Alfredo G. Tomasselli

Janus-associated kinases (JAKs) play critical roles in cytokine signaling, and have emerged as viable therapeutic targets in inflammation and oncology related diseases. To date, targeting JAK proteins with highly selective inhibitor compounds have remained elusive. We have expressed the active kinase domains for both JAK2 and JAK3 and devised purification protocols to resolve the non-, mono- (Y1007) and diphosphorylated (Y1007 and Y1008) states of JAK2 and non- and monophosphorylated states of JAK3 (Y980). An optimal purified protein yield of 20, 29 and 69mg per 20L cell culture was obtained for the three JAK2 forms, respectively, and 12.2 and 2.3mg per 10L fermentation for the two JAK3 forms allowing detailed biochemical and biophysical studies. To monitor the purification process we developed a novel HPLC activity assay where a sequential order of phosphorylation was observed whereby the first tyrosine residue was completely phosphorylated prior to phosphorylation of the tandem tyrosine residue. A Caliper-based microfluidics assay was used to determine the kinetic parameters (K(m) and k(cat)) for each phosphorylated state, showing that monophosphorylated (Y1007) JAK2 enzyme activity increased 9-fold over that of the nonphosphorylated species, and increased an additional 6-fold for the diphosphorylated (Y1007/Y1008) species, while phosphorylation of JAK3 resulted in a negligible increase in activity. Moreover, crystal structures have been generated for each isolated state of JAK2 and JAK3 with resolutions better than 2.4A. The generation of these reagents has enabled kinetic and structural characterization to inform the design of potent and selective inhibitors of the JAK family.


Analytical Biochemistry | 2002

Physical methods to determine the binding mode of putative ligands for hepatitis C virus NS3 helicase.

Ronald W. Sarver; Joseph M. Rogers; Brian J. Stockman; Dennis E. Epps; Jack DeZwaan; Melissa S. Harris; Eric T. Baldwin

Several small molecules identified by high-throughput screening (HTS) were evaluated for their ability to bind to a nonstructural protein 3 (NS3) helicase from hepatitis C virus (HCV). Equilibrium dissociation constants (K(d)s) of the compounds for this helicase were determined using several techniques including an assay measuring the kinetics of isothermal enzyme denaturation at several concentrations of the test molecule. Effects of two nonhydrolyzable ATP analogs on helicase denaturation were measured as controls using the isothermal denaturation (ITD) assay. Two compounds, 4-(2,4-dimethylphenyl)-2,7,8-trimethyl-4,5-quinolinediamine and 2-phenyl-N-(5-piperazin-1-ylpentyl)quinazolin-4-amine, were identified from screening that inhibited the enzyme and had low micromolar dissociation constants for NS3 helicase in the ITD assay. Low micromolar affinity of the quinolinediamine to helicase was also confirmed by nuclear magnetic resonance experiments. Unfortunately, isothermal titration calorimetry (ITC) experiments indicated that a more water-soluble analog bound to the 47/23-mer oligonucleotide helicase substrate with low micromolar affinity as did the substituted quinazolinamine. There was no further interest in these templates as helicase inhibitors due to the nonspecific binding to enzyme and substrate. A combination of physical methods was required to discern the mode of action of compounds identified by HTS and remove undesirable lead templates from further consideration.


Structure | 2014

Structural Basis for AMPK Activation: Natural and Synthetic Ligands Regulate Kinase Activity from Opposite Poles by Different Molecular Mechanisms.

Matthew F. Calabrese; Francis Rajamohan; Melissa S. Harris; Nicole Caspers; Rachelle Magyar; Jane M. Withka; Hong Wang; Kris A. Borzilleri; Parag Sahasrabudhe; Lise R. Hoth; Kieran F. Geoghegan; Seungil Han; Janice A. Brown; Timothy A. Subashi; Allan R. Reyes; Richard K. Frisbie; Jessica Ward; Russell A. Miller; James A. Landro; Allyn T. Londregan; Philip A. Carpino; Shawn Cabral; Aaron Smith; Edward L. Conn; Kimberly O'keefe Cameron; Xiayang Qiu; Ravi G. Kurumbail


Bioorganic & Medicinal Chemistry Letters | 2005

Inhibitors of HCV NS5B polymerase. Part 1: Evaluation of the southern region of (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid

Jeffrey A. Pfefferkorn; Richard A. Nugent; Rebecca J. Gross; Meredith Greene; Mark A. Mitchell; Matthew T. Reding; Lee A. Funk; Rebecca M. Anderson; Peter A. Wells; John A. Shelly; Robert Anstadt; Barry C. Finzel; Melissa S. Harris; Robert E. Kilkuskie; Laurice A. Kopta; Francis J. Schwende


Journal of Medicinal Chemistry | 2008

Substituted pyrazoles as hepatoselective HMG-CoA reductase inhibitors: discovery of (3R,5R)-7-[2-(4-fluoro-phenyl)-4-isopropyl-5-(4-methyl-benzylcarbamoyl)-2H-pyrazol-3-yl]-3,5-dihydroxyheptanoic acid (PF-3052334) as a candidate for the treatment of hypercholesterolemia.

Jeffrey A. Pfefferkorn; Chulho Choi; Scott D. Larsen; Bruce Auerbach; Richard Henry Hutchings; William Keun Chan Park; Valerie Askew; Lisa Dillon; Jeffrey C. Hanselman; Zhiwu Lin; Gina H. Lu; Andrew Robertson; Catherine Sekerke; Melissa S. Harris; Alexander Pavlovsky; Graeme Bainbridge; Nicole Caspers; Mark C. Kowala; Bradley D. Tait

Collaboration


Dive into the Melissa S. Harris's collaboration.

Researchain Logo
Decentralizing Knowledge