Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa S. McNulty is active.

Publication


Featured researches published by Melissa S. McNulty.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium

Zachary C. Ryan; Hemamalini Ketha; Melissa S. McNulty; Meghan E. McGee-Lawrence; Theodore A. Craig; Joseph P. Grande; Jennifer J. Westendorf; Ravinder Singh; Rajiv Kumar

Inactivating mutations of the SOST (sclerostin) gene are associated with overgrowth and sclerosis of the skeleton. To determine mechanisms by which increased amounts of calcium and phosphorus are accreted to enable enhanced bone mineralization in the absence of sclerostin, we measured concentrations of calciotropic and phosphaturic hormones, and urine and serum calcium and inorganic phosphorus in mice in which the sclerostin (sost) gene was replaced by the β-D-galactosidase (lacZ) gene in the germ line. Knockout (KO) (sost−/−) mice had increased bone mineral density and content, increased cortical and trabecular bone thickness, and greater net bone formation as a result of increased osteoblast and decreased osteoclast surfaces compared with wild-type (WT) mice. β-Galactosidase activity was detected in osteocytes of sost KO mice but was undetectable in WT mice. Eight-week-old, male sost KO mice had increased serum 1α,25-dihydroxyvitamin D, decreased 24,25-dihydroxyvitamin D, decreased intact fibroblast growth factor 23, and elevated inorganic phosphorus concentrations compared with age-matched WT mice. 25-Hydroxyvitamin D 1α-hydroxylase cytochrome P450 (cyp27B1) mRNA was increased in kidneys of sost KO mice compared with WT mice. Treatment of cultured proximal tubule cells with mouse recombinant sclerostin decreased cyp27B1 mRNA transcripts. Urinary calcium and renal fractional excretion of calcium were decreased in sost KO mice compared with WT mice. Sost KO and WT mice had similar serum calcium and parathyroid hormone concentrations. The data show that sclerostin not only alters bone mineralization, but also influences mineral metabolism by altering concentrations of hormones that regulate mineral accretion.


The Journal of Clinical Endocrinology and Metabolism | 2011

Determination of Serum and Plasma Sclerostin Concentrations by Enzyme-Linked Immunoassays

Melissa S. McNulty; Ravinder J. Singh; Xujian Li; Eric J. Bergstralh; Rajiv Kumar

BACKGROUND Sclerostin alters bone formation. The precise and reproducible measurement of sclerostin concentrations in biological samples is important for assessment of metabolic bone disease. We determined sclerostin concentrations in serum and plasma using two commercially available ELISA. METHODS We measured sclerostin concentrations in serum or heparin-plasma obtained from 25 normal human subjects using two commercial ELISA available from Biomedica Medizinprodukte GmbH and TECOmedical AG. RESULTS With the Biomedica assay, serum sclerostin concentrations were 0.99 ± 0.12 ng/ml (mean ± sem), and plasma concentrations were 1.47 ± 0.13 ng/ml (paired t test, P < 0.001). With the TECO assay, serum sclerostin levels were 0.71 ± 0.05 ng/ml, and plasma sclerostin concentrations were 0.80 ± 0.06 ng/ml (paired t test, P < 0.001). Serum and plasma sclerostin concentrations were significantly different when determined by the two assays (serum, P = 0.015; plasma, P < 0.001). Recovery of added recombinant sclerostin to serum was less than expected with both Biomedica and TECO assays (P < 0.001, paired t test). CONCLUSIONS The concentrations of sclerostin in serum and plasma are different when determined by the two assays. Serum or plasma sclerostin concentrations with current assays should be interpreted with caution. The data suggest that the same assay should be used for comparing groups of patients or patients being followed longitudinally. Standardization of sclerostin assays is required before being introduced into general clinical laboratory use.


Molecular Endocrinology | 2012

Research Resource: Whole Transcriptome RNA Sequencing Detects Multiple 1α,25-Dihydroxyvitamin D3-Sensitive Metabolic Pathways in Developing Zebrafish

Theodore A. Craig; Yuji Zhang; Melissa S. McNulty; Sumit Middha; Hemamalini Ketha; Ravinder J. Singh; Andrew T. Magis; Cory C. Funk; Nathan D. Price; Stephen C. Ekker; Rajiv Kumar

The biological role of vitamin D receptors (VDR), which are abundantly expressed in developing zebrafish (Danio rerio) as early as 48 h after fertilization, and before the development of a mineralized skeleton and mature intestine and kidney, is unknown. We probed the role of VDR in developing zebrafish biology by examining changes in expression of RNA by whole transcriptome shotgun sequencing (RNA-seq) in fish treated with picomolar concentrations of the VDR ligand and hormonal form of vitamin D(3), 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3))].We observed significant changes in RNAs of transcription factors, leptin, peptide hormones, and RNAs encoding proteins of fatty acid, amino acid, xenobiotic metabolism, receptor-activator of NFκB ligand (RANKL), and calcitonin-like ligand receptor pathways. Early highly restricted, and subsequent massive changes in more than 10% of expressed cellular RNA were observed. At days post fertilization (dpf) 2 [24 h 1α,25(OH)(2)D(3)-treatment], only four RNAs were differentially expressed (hormone vs. vehicle). On dpf 4 (72 h treatment), 77 RNAs; on dpf 6 (120 h treatment) 1039 RNAs; and on dpf 7 (144 h treatment), 2407 RNAs were differentially expressed in response to 1α,25(OH)(2)D(3). Fewer RNAs (n = 481) were altered in dpf 7 larvae treated for 24 h with 1α,25(OH)(2)D(3) vs. those treated with hormone for 144 h. At dpf 7, in 1α,25(OH)(2)D(3)-treated larvae, pharyngeal cartilage was larger and mineralization was greater. Changes in expression of RNAs for transcription factors, peptide hormones, and RNAs encoding proteins integral to fatty acid, amino acid, leptin, calcitonin-like ligand receptor, RANKL, and xenobiotic metabolism pathways, demonstrate heretofore unrecognized mechanisms by which 1α,25(OH)(2)D(3) functions in vivo in developing eukaryotes.


Cancer Letters | 2016

Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein

Yu Wang; Xiwei Ding; Shaoqing Wang; Catherine D. Moser; Hassan M. Shaleh; Essa A. Mohamed; Roongruedee Chaiteerakij; Loretta K. Allotey; Gang Chen; Katsuyuki Miyabe; Melissa S. McNulty; Albert Ndzengue; Emily G. Barr Fritcher; Ryan A. Knudson; Patricia T. Greipp; Karl J. Clark; Michael Torbenson; Benjamin R. Kipp; Jie Zhou; Michael T. Barrett; Michael P. Gustafson; Steven R. Alberts; Mitesh J. Borad; Lewis R. Roberts

Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions.


Cell Reports | 2016

Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer

Yu Zhao; Liguo Wang; Shancheng Ren; Lan Wang; Patrick R. Blackburn; Melissa S. McNulty; Xu Gao; Meng Qiao; Robert L. Vessella; Manish Kohli; Jun Zhang; R. Jeffrey Karnes; Donald J. Tindall; Young Soo Kim; Robert M. MacLeod; Stephen C. Ekker; Tiebang Kang; Yinghao Sun; Haojie Huang

The androgen receptor (AR) is required for castration-resistant prostate cancer (CRPC) progression, but the function and disease relevance of AR-bound enhancers remain unclear. Here, we identify a group of AR-regulated enhancer RNAs (e.g., PSA eRNA) that are upregulated in CRPC cells, patient-derived xenografts (PDXs), and patient tissues. PSA eRNA binds to CYCLIN T1, activates P-TEFb, and promotes cis and trans target gene transcription by increasing serine-2 phosphorylation of RNA polymerase II (Pol II-Ser2p). We define an HIV-1 TAR RNA-like (TAR-L) motif in PSA eRNA that is required for CYCLIN T1 binding. Using TALEN-mediated gene editing we further demonstrate that this motif is essential for increased Pol II-Ser2p occupancy levels and CRPC cell growth. We have uncovered a P-TEFb activation mechanism and reveal altered eRNA expression that is related to abnormal AR function and may potentially be a therapeutic target in CRPC.


Human Gene Therapy | 2016

FusX: A rapid one-step transcription activator-like effector assembly system for genome science

Alvin C.H. Ma; Melissa S. McNulty; Tanya L. Poshusta; Jarryd M. Campbell; Gabriel Martínez-Gálvez; David P. Argue; Han B. Lee; Mark D. Urban; Cassandra E. Bullard; Patrick R. Blackburn; Toni K. Man; Karl J. Clark; Stephen C. Ekker

Transcription activator-like effectors (TALEs) are extremely effective, single-molecule DNA-targeting molecular cursors used for locus-specific genome science applications, including high-precision molecular medicine and other genome engineering applications. TALEs are used in genome engineering for locus-specific DNA editing and imaging, as artificial transcriptional activators and repressors, and for targeted epigenetic modification. TALEs as nucleases (TALENs) are effective editing tools and offer high binding specificity and fewer sequence constraints toward the targeted genome than other custom nuclease systems. One bottleneck of broader TALE use is reagent accessibility. For example, one commonly deployed method uses a multitube, 5-day assembly protocol. Here we describe FusX, a streamlined Golden Gate TALE assembly system that (1) is backward compatible with popular TALE backbones, (2) is functionalized as a single-tube 3-day TALE assembly process, (3) requires only commonly used basic molecular biology reagents, and (4) is cost-effective. More than 100 TALEN pairs have been successfully assembled using FusX, and 27 pairs were quantitatively tested in zebrafish, with each showing high somatic and germline activity. Furthermore, this assembly system is flexible and is compatible with standard molecular biology laboratory tools, but can be scaled with automated laboratory support. To demonstrate, we use a highly accessible and commercially available liquid-handling robot to rapidly and accurately assemble TALEs using the FusX TALE toolkit. Together, the FusX system accelerates TALE-based genomic science applications from basic science screening work for functional genomics testing and molecular medicine applications.


BMC Research Notes | 2012

Seed storage proteins of the globulin family are cleaved post-translationally in wheat embryos

Adam G. Koziol; Evelin Loit; Melissa S. McNulty; Amanda J MacFarlane; Fraser W. Scott; Illimar Altosaar

BackgroundThe 7S globulins are plant seed storage proteins that have been associated with the development of a number of human diseases, including peanut allergy. Immune reactivity to the wheat seed storage protein globulin-3 (Glo-3) has been associated with the development of the autoimmune disease type 1 diabetes in diabetes-prone rats and mice, as well as in a subset of human patients.FindingsThe present study characterized native wheat Glo-3 in salt-soluble wheat seed protein extracts. Glo-3-like peptides were observed primarily in the wheat embryo. Glo-3-like proteins varied significantly in their molecular masses and isoelectric points, as determined by two dimensional electrophoresis and immunoblotting with anti-Glo-3A antibodies. Five major polypeptide spots were identified by mass spectrometry and N-terminal sequencing as belonging to the Glo-3 family.ConclusionsThese results in combination with our previous findings have allowed for the development of a hypothetical model of the post-translational events contributing to the wheat 7S globulin profile in mature wheat kernels.


Gene Expression Patterns | 2012

Expression of sclerostin in the developing zebrafish (Danio rerio) brain and skeleton.

Melissa S. McNulty; Victoria M. Bedell; Tammy M. Greenwood; Theodore A. Craig; Stephen C. Ekker; Rajiv Kumar

Sclerostin is a highly conserved, secreted, cystine-knot protein which regulates osteoblast function. Humans with mutations in the sclerostin gene (SOST), manifest increased axial and appendicular skeletal bone density with attendant complications. In adult bone, sclerostin is expressed in osteocytes and osteoblasts. Danio rerio sclerostin-like protein is closely related to sea bass sclerostin, and is related to chicken and mammalian sclerostins. Little is known about the expression of sclerostin in early developing skeletal or extra-skeletal tissues. We assessed sclerostin (sost) gene expression in developing zebrafish (D. rerio) embryos with whole mount is situ hybridization methods. The earliest expression of sost mRNA was noted during 12h post-fertilization (hpf). At 15 hpf, sost mRNA was detected in the developing nervous system and in Kupffers vesicle. At 18, 20 and 22 hpf, expression in rhombic lip precursors was seen. By 24 hpf, expression in the upper and lower rhombic lip and developing spinal cord was noted. Expression in the rhombic lip and spinal cord persisted through 28 hpf and then diminished in intensity through 44 hpf. At 28 hpf, sost expression was noted in developing pharyngeal cartilage; expression in pharyngeal cartilage increased with time. By 48 hpf, sost mRNA was clearly detected in the developing pharyngeal arch cartilage. Sost mRNA was abundantly expressed in the pharyngeal arch cartilage, and in developing pectoral fins, 72, 96 and 120 hpf. Our study is the first detailed analysis of sost gene expression in early metazoan development.


PLOS ONE | 2015

Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis.

Stephanie E. Westcot; Julia Hatzold; Mark D. Urban; Stefânia Richetti; Kimberly J. Skuster; Rhianna M. Harm; Roberto Lopez Cervera; Noriko Umemoto; Melissa S. McNulty; Karl J. Clark; Matthias Hammerschmidt; Stephen C. Ekker

Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes—fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a—had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a) – ErbB2/3 – AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a – ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.


Human Gene Therapy | 2016

Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping

Han B. Lee; Tanya L. Schwab; Alaa Koleilat; Hirotaka Ata; Camden L. Daby; Roberto Lopez Cervera; Melissa S. McNulty; Hannah S. Bostwick; Karl J. Clark

Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98–100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score genotypes. ASQ is cost-effective because universal fluorescent probes negate the necessity of designing expensive probes for each locus.

Collaboration


Dive into the Melissa S. McNulty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravinder Singh

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge