Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melissa T. Carter is active.

Publication


Featured researches published by Melissa T. Carter.


American Journal of Human Genetics | 2013

Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing

Yong-hui Jiang; Ryan K. C. Yuen; Xin Jin; Mingbang Wang; Nong Chen; Xueli Wu; Jia Ju; Junpu Mei; Yujian Shi; Mingze He; Guangbiao Wang; Jieqin Liang; Zhe Wang; Dandan Cao; Melissa T. Carter; Christina Chrysler; Irene Drmic; Jennifer L. Howe; Lynette Lau; Christian R. Marshall; Daniele Merico; Thomas Nalpathamkalam; Bhooma Thiruvahindrapuram; Ann Thompson; Mohammed Uddin; Susan Walker; Jun Luo; Evdokia Anagnostou; Lonnie Zwaigenbaum; Robert H. Ring

Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.


Nature Medicine | 2015

Whole-genome sequencing of quartet families with autism spectrum disorder

Ryan K. C. Yuen; Bhooma Thiruvahindrapuram; Daniele Merico; Susan Walker; Kristiina Tammimies; Ny Hoang; Christina Chrysler; Thomas Nalpathamkalam; Giovanna Pellecchia; Yi Liu; Matthew J. Gazzellone; Lia D'Abate; Eric Deneault; Jennifer L. Howe; Richard S C Liu; Ann Thompson; Mehdi Zarrei; Mohammed Uddin; Christian R. Marshall; Robert H. Ring; Lonnie Zwaigenbaum; Peter N. Ray; Rosanna Weksberg; Melissa T. Carter; Bridget A. Fernandez; Wendy Roberts; Peter Szatmari; Stephen W. Scherer

Autism spectrum disorder (ASD) is genetically heterogeneous, with evidence for hundreds of susceptibility loci. Previous microarray and exome-sequencing studies have examined portions of the genome in simplex families (parents and one ASD-affected child) having presumed sporadic forms of the disorder. We used whole-genome sequencing (WGS) of 85 quartet families (parents and two ASD-affected siblings), consisting of 170 individuals with ASD, to generate a comprehensive data resource encompassing all classes of genetic variation (including noncoding variants) and accompanying phenotypes, in apparently familial forms of ASD. By examining de novo and rare inherited single-nucleotide and structural variations in genes previously reported to be associated with ASD or other neurodevelopmental disorders, we found that some (69.4%) of the affected siblings carried different ASD-relevant mutations. These siblings with discordant mutations tended to demonstrate more clinical variability than those who shared a risk variant. Our study emphasizes that substantial genetic heterogeneity exists in ASD, necessitating the use of WGS to delineate all genic and non-genic susceptibility variants in research and in clinical diagnostics.


JAMA | 2015

Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder

Kristiina Tammimies; Christian R. Marshall; Susan Walker; Gaganjot Kaur; Bhooma Thiruvahindrapuram; Anath C. Lionel; Ryan K. C. Yuen; Mohammed Uddin; Wendy Roberts; Rosanna Weksberg; Marc Woodbury-Smith; Lonnie Zwaigenbaum; Evdokia Anagnostou; Z. B. Wang; John Wei; Jennifer L. Howe; Matthew J. Gazzellone; Lynette Lau; Wilson W L Sung; Kathy Whitten; Cathy Vardy; Victoria Crosbie; Brian Tsang; Lia D’Abate; Winnie W. L. Tong; Sandra Luscombe; Tyna Doyle; Melissa T. Carter; Peter Szatmari; Susan Stuckless

IMPORTANCE The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study. OBJECTIVE To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic. DESIGN, SETTING, AND PARTICIPANTS The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6). EXPOSURES All probands underwent CMA, with WES performed for 95 proband-parent trios. MAIN OUTCOMES AND MEASURES The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups. RESULTS Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text]. CONCLUSIONS AND RELEVANCE Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.


Nature Neuroscience | 2017

Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

Ryan K. C. Yuen; Daniele Merico; Matt Bookman; Jennifer L. Howe; Bhooma Thiruvahindrapuram; Rohan V. Patel; Joe Whitney; Nicole Deflaux; Jonathan Bingham; Z. B. Wang; Giovanna Pellecchia; Janet A. Buchanan; Susan Walker; Christian R. Marshall; Mohammed Uddin; Mehdi Zarrei; Eric Deneault; Lia D'Abate; Ada J S Chan; Stephanie Koyanagi; Tara Paton; Sergio L. Pereira; Ny Hoang; Worrawat Engchuan; Edward J. Higginbotham; Karen Ho; Sylvia Lamoureux; Weili Li; Jeffrey R. MacDonald; Thomas Nalpathamkalam

We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10−4). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.


npj Genomic Medicine | 2016

Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine

Dimitri J. Stavropoulos; Daniele Merico; Rebekah Jobling; Sarah Bowdin; Nasim Monfared; Bhooma Thiruvahindrapuram; Thomas Nalpathamkalam; Giovanna Pellecchia; Ryan Kc C. Yuen; Michael J. Szego; Robin Z. Hayeems; Randi Zlotnik Shaul; Michael Brudno; Marta Girdea; Brendan J. Frey; Babak Alipanahi; Sohnee Ahmed; Riyana Babul-Hirji; Ramses Badilla Porras; Melissa T. Carter; Lauren Chad; Ayeshah Chaudhry; David Chitayat; Soghra Jougheh Doust; Cheryl Cytrynbaum; Lucie Dupuis; Resham Ejaz; Leona Fishman; Andrea Guerin; Bita Hashemi

The standard of care for first-tier clinical investigation of the aetiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy-number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion–deletions (indels) and single-nucleotide variant (SNV) mutations. Whole-genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilised WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a fourfold increase in diagnostic rate over CMA (8%; P value=1.42E−05) alone and more than twofold increase in CMA plus targeted gene sequencing (13%; P value=0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harbouring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counselling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.


Nature Genetics | 2013

Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome

Laura M McDonell; Ghayda M. Mirzaa; Diana Alcantara; Jeremy Schwartzentruber; Melissa T. Carter; Leo J. Lee; Carol L. Clericuzio; John M. Graham; Deborah J. Morris-Rosendahl; Tilman Polster; Gyula Acsadi; Sharron Townshend; Simon Williams; Anne Halbert; Bertrand Isidor; Albert David; Christopher D. Smyser; Alex R. Paciorkowski; Marcia C. Willing; John Woulfe; Soma Das; Chandree L. Beaulieu; Janet Marcadier; Michael T. Geraghty; Brendan J. Frey; Jacek Majewski; Dennis E. Bulman; William B. Dobyns; Mark O'Driscoll; Kym M. Boycott

Microcephaly–capillary malformation (MIC-CAP) syndrome is characterized by severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We used whole-exome sequencing of five patients with MIC-CAP syndrome and identified recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein, also known as AMSH, associated molecule with the SH3 domain of STAM) that has a key role in cell surface receptor–mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is notable considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP syndrome.


American Journal of Medical Genetics Part A | 2009

Phenotypic delineation of Emanuel syndrome (supernumerary derivative 22 syndrome): Clinical features of 63 individuals.

Melissa T. Carter; Stephanie A. St.Pierre; Elaine H. Zackai; Beverly S. Emanuel; Kym M. Boycott

Emanuel syndrome is characterized by multiple congenital anomalies and developmental disability. It is caused by the presence of a supernumerary derivative chromosome that contains material from chromosomes 11 and 22. The origin of this imbalance is 3:1 malsegregation of a parental balanced translocation between chromosomes 11 and 22, which is the most common recurrent reciprocal translocation in humans. Little has been published on the clinical features of this syndrome since the 1980s and information on natural history is limited. We designed a questionnaire to collect information from families recruited through an international online support group, Chromosome 22 Central. Data gathered include information on congenital anomalies, medical and surgical history, developmental and behavioral issues, and current abilities. We received information on 63 individuals with Emanuel syndrome, ranging in age from newborn to adulthood. As previously recognized, congenital anomalies were common, the most frequent being ear pits (76%), micrognathia (60%), heart malformations (57%), and cleft palate (54%). Our data suggest that vision and hearing impairment, seizures, failure to thrive and recurrent infections, particularly otitis media, are common in this syndrome. Psychomotor development is uniformly delayed, however the majority of individuals (over 70%) eventually learn to walk with support. Language development and ability for self‐care are also very impaired. This study provides new information on the clinical spectrum and natural history of Emanuel syndrome for families and physicians caring for these individuals.


Genetics in Medicine | 2017

Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test

Anath C. Lionel; Gregory Costain; Nasim Monfared; Susan Walker; Miriam S. Reuter; S. Mohsen Hosseini; Bhooma Thiruvahindrapuram; Daniele Merico; Rebekah Jobling; Thomas Nalpathamkalam; Giovanna Pellecchia; Wilson W L Sung; Z. B. Wang; Peter Bikangaga; Cyrus Boelman; Melissa T. Carter; Dawn Cordeiro; Cheryl Cytrynbaum; Sharon D. Dell; Priya Dhir; James J. Dowling; Elise Héon; Stacy Hewson; Linda Hiraki; Michal Inbar-Feigenberg; Regan Klatt; Jonathan Kronick; Ronald M Laxer; Christoph Licht; Heather MacDonald

PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.


JCI insight | 2016

PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution

Ghayda M. Mirzaa; Andrew E. Timms; Valerio Conti; Evan A. Boyle; Katta M. Girisha; Beth Martin; Martin Kircher; Carissa Olds; Jane Juusola; Sarah Collins; Kaylee Park; Melissa T. Carter; Ian A. Glass; Inge Krägeloh-Mann; David Chitayat; Aditi Shah Parikh; Rachael Bradshaw; Erin Torti; Stephen R. Braddock; Leah W. Burke; Sondhya Ghedia; Mark J. Stephan; Fiona Stewart; Chitra Prasad; Melanie Napier; Sulagna C. Saitta; Rachel Straussberg; Michael T. Gabbett; Bridget C. O’Connor; Catherine E. Keegan

Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of PIK3CA have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS using 2 independent deep-coverage methods that utilize molecular inversion probes and amplicon sequencing in a cohort of 241 samples from 181 individuals with brain and/or body overgrowth. We identified PIK3CA mutations in 60 individuals. Several other individuals (n = 12) were identified separately to have mutations in PIK3CA by clinical targeted-panel testing (n = 6), whole-exome sequencing (n = 5), or Sanger sequencing (n = 1). Based on the clinical and molecular features, this cohort segregated into three distinct groups: (a) severe focal overgrowth due to low-level but highly activating (hotspot) mutations, (b) predominantly brain overgrowth and less severe somatic overgrowth due to less-activating mutations, and (c) intermediate phenotypes (capillary malformations with overgrowth) with intermediately activating mutations. Sixteen of 29 PIK3CA mutations were novel. We also identified constitutional PIK3CA mutations in 10 patients. Our molecular data, combined with review of the literature, show that PIK3CA-related overgrowth disorders comprise a discontinuous spectrum of disorders that correlate with the severity and distribution of mutations.


Lancet Neurology | 2015

Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study

Ghayda M. Mirzaa; Valerio Conti; Andrew E. Timms; Christopher D. Smyser; Sarah Ahmed; Melissa T. Carter; Sarah S. Barnett; Robert B. Hufnagel; Amy Goldstein; Yoko Narumi-Kishimoto; Carissa Olds; Sarah Collins; Kathreen Johnston; Jean-François Deleuze; Patrick Nitschke; Kathryn Friend; Catharine J. Harris; Allison L. Goetsch; Beth Martin; Evan A. Boyle; Elena Parrini; Davide Mei; Lorenzo Tattini; Anne Slavotinek; Ed Blair; Christopher Barnett; Jay Shendure; Jamel Chelly; William B. Dobyns; Renzo Guerrini

SUMMARY Background Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy. BPP is etiologically heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic etiologies of BPP and delineate their frequency in this patient population. Methods We performed child-parent (trio)-based whole exome sequencing (WES) on eight children with BPP. Following the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 in a cohort of 118 children with BPP who were ascertained from 1980 until 2015 using two methods. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal-large head size. Second, we performed amplicon sequencing of the recurrent PIK3R2 mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria including BPP. One additional patient underwent clinical WES independently, and was included in this study given the phenotypic similarity to our cohort. All patients included in this study were children (< 18 years of age) with polymicrogyria enrolled in our research program. Findings Using WES, we identified a mosaic mutation (p.Gly373Arg) in the regulatory subunit of the PI3K-AKT-MTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal-large head size who underwent targeted next generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient was found to have the recurrent PIK3R2 mutation by clinical WES. Seven patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH). Nineteen patients had the same mutation (Gly373Arg), and one had a nearby missense mutation (p.Lys376Glu). Across the entire cohort, mutations were constitutional in 12 and mosaic in eight patients. Among mosaic patients, we observed substantial variation in alternate (mutant) allele levels ranging from 2·5% (10/377) to 36·7% (39/106) of reads, equivalent to 5–73·4% of cells analyzed. Levels of mosaicism varied from undetectable to 17·1% (37/216) of reads in blood-derived compared to 29·4% (2030/6889) to 43·3% (275/634) in saliva-derived DNA. Interpretation Constitutional and mosaic mutations in the PIK3R2 gene are associated with a spectrum of developmental brain disorders ranging from BPP with a normal head size to the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The phenotypic variability and low-level mosaicism challenging conventional molecular methods have important implications for genetic testing and counseling.

Collaboration


Dive into the Melissa T. Carter's collaboration.

Top Co-Authors

Avatar

Christian R. Marshall

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Merico

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Susan Walker

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar

Kym M. Boycott

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammed Uddin

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan K. C. Yuen

The Centre for Applied Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge