Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ye G Melka is active.

Publication


Featured researches published by ye G Melka.


Clinical Epigenetics | 2014

The effects of olanzapine on genome-wide DNA methylation in the hippocampus and cerebellum

Melkaye G Melka; Benjamin I. Laufer; Patrick P. McDonald; Christina A. Castellani; Nagalingam Rajakumar; Richard O’Reilly; Shiva M. Singh

BackgroundThe mechanism of action of olanzapine in treating schizophrenia is not clear. This research reports the effects of a therapeutic equivalent treatment of olanzapine on DNA methylation in a rat model in vivo.Genome-wide DNA methylation was assessed using a MeDIP-chip analysis. All methylated DNA immunoprecipitation (MeDIP), sample labelling, hybridization and processing were performed by Arraystar Inc (Rockville, MD, USA). The identified gene promoters showing significant alterations to DNA methylation were then subjected to Ingenuity Pathway Analysis (Ingenuity System Inc, CA, USA).ResultsThe results show that olanzapine causes an increase in methylation in 1,140, 1,294 and 1,313 genes and a decrease in methylation in 633, 565 and 532 genes in the hippocampus, cerebellum and liver, respectively. Most genes affected are tissue specific. Only 41 affected genes (approximately 3%) showed an increase and no gene showed a decrease in methylation in all three tissues. Further, the two brain regions shared 123 affected genes (approximately 10%). The affected genes are enriched in pathways affecting dopamine signalling, molecular transport, nervous system development and functions in the hippocampus; ephrin receptor signalling and synaptic long-term potentiation in the cerebellum; and tissue morphology, cellular assembly and organization in the liver. Also, the affected genes included those previously implicated in psychosis.ConclusionsThe known functions of affected genes suggest that the observed epigenetic changes may underlie the amelioration of symptoms as well as accounting for certain adverse effects including the metabolic syndrome. The results give insights into the mechanism of action of olanzapine, therapeutic effects and the side effects of antipsychotics.


BMC Medical Genomics | 2015

DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks

Christina A. Castellani; Benjamin I. Laufer; Melkaye G Melka; Eric J. Diehl; Richard O’Reilly; Shiva M. Singh

BackgroundDespite their singular origin, monozygotic twin pairs often display discordance for complex disorders including schizophrenia. It is a common (1%) and often familial disease with a discordance rate of ~50% in monozygotic twins. This high discordance is often explained by the role of yet unknown environmental, random, and epigenetic factors. The involvement of DNA methylation in this disease appears logical, but remains to be established.MethodsWe have used blood DNA from two pairs of monozygotic twins discordant for schizophrenia and their parents in order to assess genome-wide methylation using a NimbleGen Methylation Promoter Microarray.ResultsThe genome-wide results show that differentially methylated regions (DMRs) exist between members representing discordant monozygotic twins. Some DMRs are shared with parent(s) and others appear to be de novo. We found twenty-seven genes affected by DMR changes that were shared in the affected member of two discordant monozygotic pairs from unrelated families. Interestingly, the genes affected by pair specific DMRs share specific networks. Specifically, this study has identified two networks; “cell death and survival” and a “cellular movement and immune cell trafficking”. These two networks and the genes affected have been previously implicated in the aetiology of schizophrenia.ConclusionsThe results are compatible with the suggestion that DNA methylation may contribute to the discordance of monozygotic twins for schizophrenia. Also, this may be accomplished by the direct effect of gene specific methylation changes on specific biological networks rather than individual genes. It supports the extensive genetic, epigenetic and phenotypic heterogeneity implicated in schizophrenia.


Twin Research and Human Genetics | 2014

Copy number variation distribution in six monozygotic twin pairs discordant for schizophrenia.

Christina A. Castellani; Zain Awamleh; Melkaye G Melka; Richard L. O'Reilly; Shiva M. Singh

We have evaluated copy number variants (CNVs) in six monozygotic twin pairs discordant for schizophrenia. The data from Affymetrix® Human SNP 6.0 arrays™ were analyzed using Affymetrix® Genotyping Console™, Partek® Genomics Suite™, PennCNV, and Golden Helix SVS™. This yielded both program-specific and overlapping results. Only CNVs called by Affymetrix Genotyping Console, Partek Genomics Suite, and PennCNV were used in further analysis. This analysis included an assessment of calls in each of the six twin pairs towards identification of unique CNVs in affected and unaffected co-twins. Real time polymerase chain reaction (PCR) experiments confirmed one CNV loss at 7q11.21 that was found in the affected patient but not in the unaffected twin. The results identified CNVs and genes that were previously implicated in mental abnormalities in four of the six twin pairs. It included PYY (twin pairs 1 and 5), EPHA3 (twin pair 3), KIAA1211L (twin pair 4), and GPR139 (twin pair 5). They represent likely candidate genes and CNVs for the discordance of four of the six monozygotic twin pairs for this heterogeneous neurodevelopmental disorder. An explanation for these differences is ontogenetic de novo events that differentiate in the monozygotic twins during development.


Journal of Molecular Psychiatry | 2013

Olanzapine induced DNA methylation changes support the dopamine hypothesis of psychosis

Melkaye G Melka; Christina A. Castellani; Benjamin I. Laufer; Nagalingam Rajakumar; Richard O’Reilly; Shiva M. Singh

BackgroundThe dopamine (DA) hypothesis of schizophrenia proposes the mental illness is caused by excessive transmission of dopamine in selected brain regions. Multiple lines of evidence, including blockage of dopamine receptors by antipsychotic drugs that are used to treat schizophrenia, support the hypothesis. However, the dopamine D2 receptor (DRD2) blockade cannot explain some important aspects of the therapeutic effect of antipsychotic drugs. In this study, we hypothesized that antipsychotic drugs could affect the transcription of genes in the DA pathway by altering their epigenetic profile.MethodsTo test this hypothesis, we examined the effect of olanzapine, a commonly used atypical antipsychotic drug, on the DNA methylation status of genes from DA neurotransmission in the brain and liver of rats. Genomic DNA isolated from hippocampus, cerebellum, and liver of olanzapine treated (n = 2) and control (n = 2) rats were analyzed using rat specific methylation arrays.ResultsOur results show that olanzapine causes methylation changes in genes encoding for DA receptors (dopamine D1 receptor, dopamine D2 receptor and dopamine D5 receptor), a DA transporter (solute carrier family 18 member 2), a DA synthesis (differential display clone 8), and a DA metabolism (catechol-O-methyltransferase). We assessed a total of 40 genes in the DA pathway and found 19 to be differentially methylated between olanzapine treated and control rats. Most (17/19) genes showed an increase in methylation, in their promoter regions with in silico analysis strongly indicating a functional potential to suppress transcription in the brain.ConclusionOur results suggest that chronic olanzapine may reduce DA activity by altering gene methylation. It may also explain the delayed therapeutic effect of antipsychotics, which occurs despite rapid dopamine blockade. Furthermore, given the common nature of epigenetic variation, this lends insight into the differential therapeutic response of psychotic patients who display adequate blockage of dopamine receptors.


BMC Bioinformatics | 2014

Biological relevance of CNV calling methods using familial relatedness including monozygotic twins

Christina A. Castellani; Melkaye G Melka; Andrea E Wishart; M Elizabeth O Locke; Zain Awamleh; Richard O’Reilly; Shiva M. Singh

BackgroundStudies involving the analysis of structural variation including Copy Number Variation (CNV) have recently exploded in the literature. Furthermore, CNVs have been associated with a number of complex diseases and neurodevelopmental disorders. Common methods for CNV detection use SNP, CNV, or CGH arrays, where the signal intensities of consecutive probes are used to define the number of copies associated with a given genomic region. These practices pose a number of challenges that interfere with the ability of available methods to accurately call CNVs. It has, therefore, become necessary to develop experimental protocols to test the reliability of CNV calling methods from microarray data so that researchers can properly discriminate biologically relevant data from noise.ResultsWe have developed a workflow for the integration of data from multiple CNV calling algorithms using the same array results. It uses four CNV calling programs: PennCNV (PC), Affymetrix® Genotyping Console™ (AGC), Partek® Genomics Suite™ (PGS) and Golden Helix SVS™ (GH) to analyze CEL files from the Affymetrix® Human SNP 6.0 Array™. To assess the relative suitability of each program, we used individuals of known genetic relationships. We found significant differences in CNV calls obtained by different CNV calling programs.ConclusionsAlthough the programs showed variable patterns of CNVs in the same individuals, their distribution in individuals of different degrees of genetic relatedness has allowed us to offer two suggestions. The first involves the use of multiple algorithms for the detection of the largest possible number of CNVs, and the second suggests the use of PennCNV over all other methods when the use of only one software program is desirable.


Schizophrenia Research | 2015

Integration of DNA sequence and DNA methylation changes in monozygotic twin pairs discordant for schizophrenia.

Christina A. Castellani; Melkaye G Melka; J.L. Gui; Richard L. O'Reilly; Shiva M. Singh

Schizophrenia is a complex mental disorder with high heritability (80%), extensive genetic heterogeneity, environmental contributions and only 50% concordance in discordant monozygotic (MZ) twins. Discordant MZ twins provide an exceptional opportunity to assess patient specific genome-wide genetic and epigenetic changes that may account for the disease phenotype. A combined analysis of genetic and epigenetic changes on the same twin pairs is expected to provide a more effective approach for two reasons. First, it is now possible to generate relatively reliable complete genome sequences as well as promoter methylation states on an individual level and second, the unaffected twin that originated from the same zygote provides a near perfect genetic match for contrast and comparison. This report deals with the combined analysis of DNA sequence data and methylation data on two pairs of discordant MZ twins that have been clinically followed for over 20 years. Results on Family 1 show that 58 genes differ in DNA sequence as well as promoter methylation in a schizophrenia-affected twin as compared to her healthy co-twin. The corresponding number for family 2 was 13. The two lists are over represented by neuronal genes and include a number of known schizophrenia candidate genes and drug targets. The results argue that changes in multiple genes via co-localized genetic and epigenetic alteration contribute to a liability threshold that is necessary for development of schizophrenia. This novel hypothesis, although logical, remains to be validated.


Epigenomics | 2015

DNA methylation in psychosis: insights into etiology and treatment

Christina A. Castellani; Melkaye G Melka; Eric J. Diehl; Benjamin I. Laufer; Richard L. O'Reilly; Shiva M. Singh

Evidence for involvement of DNA methylation in psychosis forms the focus of this perspective. Of interest are results from two independent sets of experiments including rats treated with antipsychotic drugs and monozygotic twins discordant for schizophrenia. The results show that DNA methylation is increased in rats treated with antipsychotic drugs, reflecting the global effect of the drugs. Some of these changes are also seen in affected schizophrenic twins that were treated with antipsychotics. The genes and pathways identified in the unrelated experiments are relevant to neurodevelopment and psychiatric disorders. The common cause is hypothesized to be aberrations resulting from medication use. However, this needs to be established by future studies that address the origin of methylation changes in psychosis.


BMC Neuroscience | 2014

Olanzapine-induced methylation alters cadherin gene families and associated pathways implicated in psychosis

Melkaye G Melka; Christina A. Castellani; Nagalingam Rajakumar; Richard O’Reilly; Shiva M. Singh

BackgroundThe complex aetiology of most mental disorders involves gene-environment interactions that may operate using epigenetic mechanisms particularly DNA methylation. It may explain many of the features seen in mental disorders including transmission, expression and antipsychotic treatment responses. This report deals with the assessment of DNA methylation in response to an antipsychotic drug (olanzapine) on brain (cerebellum and hippocampus), and liver as a non-neural reference in a rat model. The study focuses on the Cadherin/protocadherins encoded by a multi-gene family that serve as adhesion molecules and are involved in cell-cell communication in the mammalian brain. A number of these molecules have been implicated in the causation of schizophrenia and related disorders.ResultsThe results show that olanzapine causes changes in DNA methylation, most specific to the promoter region of specific genes. This response is tissue specific and involves a number of cadherin genes, particularly in cerebellum. Also, the genes identified have led to the identification of several pathways significantly affected by DNA methylation in cerebellum, hippocampus and liver. These included the Gα12/13 Signalling (p = 9.2E-08) and Wnt signalling (p = 0.01) pathways as contributors to psychosis that is based on its responsiveness to antipsychotics used in its treatment.ConclusionThe results suggest that DNA methylation changes on the promoter regions of the Cadherin/protocadherin genes impact the response of olanzapine treatment. These impacts have been revealed through the identified pathways and particularly in the identification of pathways that have been previously implicated in psychosis.


Journal of Molecular Psychiatry | 2015

Insights into the origin of DNA methylation differences between monozygotic twins discordant for schizophrenia

Melkaye G Melka; Christina A. Castellani; Richard O’Reilly; Shiva M. Singh

BackgroundDNA methylation differences between monozygotic twins discordant for schizophrenia have been previously reported. However, the origin of methylation differences between monozygotic twins discordant for schizophrenia is not clear. The findings here argue that all DNA methylation differences may not necessarily represent the cause of the disease; rather some may result from the effect of antipsychotics.MethodsMethylation differences in rat brain regions and also in two pairs of unrelated monozygotic twins discordant for schizophrenia have been studied using genome-wide DNA methylation arrays at Arraystar Inc. (Rockville, Maryland, USA). The identified gene promoters showing significant alterations to DNA methylation were then further characterized using ingenuity pathway analysis (Ingenuity System Inc, CA, USA).ResultsPathway analysis of the most significant gene promoter hyper/hypomethylation revealed a significant enrichment of DNA methylation changes in biological networks and pathways directly relevant to neural development and psychiatric disorders. These included HIPPO signaling (p = 3.93E-03) and MAPK signaling (p = 4.27E-03) pathways involving hypermethylated genes in schizophrenia-affected patients as compared to their unaffected co-twins. Also, a number of significant pathways and networks involving genes with hypomethylated gene promoters have been identified. These included CREB signaling in neurons (p = 1.53E-02), Dopamine-DARPP32 feedback in cAMP signaling (p = 7.43E-03) and Ephrin receptors (p = 1.13E-02). Further, there was significant enrichment for pathways involved in nervous system development and function (p = 1.71E-03-4.28E-02).ConclusionThe findings highlight the significance of antipsychotic drugs on DNA methylation in schizophrenia patients. The unique pathways affected by DNA methylation in the two pairs of monozygotic twins suggest that patient-specific pathways are responsible for the disease; suggesting that patient-specific treatment strategies may be necessary in treating the disorder. The study reflects the need for developing personalized medicine approaches that take into consideration epigenetic variations between patients.


Clinical and translational medicine | 2017

Post-zygotic genomic changes in glutamate and dopamine pathway genes may explain discordance of monozygotic twins for schizophrenia

Christina A. Castellani; Melkaye G Melka; J.L. Gui; A. J. Gallo; Richard O’Reilly; Shiva M. Singh

BackgroundMonozygotic twins are valuable in assessing the genetic vs environmental contribution to diseases. In the era of complete genome sequences, they allow identification of mutational mechanisms and specific genes and pathways that offer predisposition to the development of complex diseases including schizophrenia.MethodsWe sequenced the complete genomes of two pairs of monozygotic twins discordant for schizophrenia (MZD), including one representing a family tetrad. The family specific complete sequences have allowed identification of post zygotic mutations between MZD genomes. It allows identification of affected genes including relevant network and pathways that may account for the diseased state in pair specific patient.ResultsWe found multiple twin specific sequence differences between co-twins that included small nucleotides [single nucleotide variants (SNV), small indels and block substitutions], copy number variations (CNVs) and structural variations. The genes affected by these changes belonged to a number of canonical pathways, the most prominent ones are implicated in schizophrenia and related disorders. Although these changes were found in both twins, they were more frequent in the affected twin in both pairs. Two specific pathway defects, glutamate receptor signaling and dopamine feedback in cAMP signaling pathways, were uniquely affected in the two patients representing two unrelated families.ConclusionsWe have identified genome-wide post zygotic mutations in two MZD pairs affected with schizophrenia. It has allowed us to use the threshold model and propose the most likely cause of this disease in the two patients studied. The results support the proposition that each schizophrenia patient may be unique and heterogeneous somatic de novo events may contribute to schizophrenia threshold and discordance of the disease in monozygotic twins.

Collaboration


Dive into the ye G Melka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiva M. Singh

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Richard O’Reilly

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Benjamin I. Laufer

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Nagalingam Rajakumar

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Richard L. O'Reilly

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Eric J. Diehl

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

J.L. Gui

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Zain Awamleh

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

A. J. Gallo

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge