Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melodi Javid Whitley is active.

Publication


Featured researches published by Melodi Javid Whitley.


Theranostics | 2015

A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.

Yang Liu; Everett J. Moding; Hsiangkuo Yuan; Janna K. Register; Andrew M. Fales; Jaeyeon Choi; Melodi Javid Whitley; Xiao-Guang Zhao; Yi Qi; Yan Ma; Ganesan Vaidyanathan; Michael R. Zalutsky; David G. Kirsch; Cristian T. Badea; Tuan Vo-Dinh

Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probes biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probes superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.


Science Translational Medicine | 2016

A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer

Melodi Javid Whitley; Diana M. Cardona; Alexander L. Lazarides; Ivan Spasojevic; Jorge M. Ferrer; Joan Cahill; Chang-Lung Lee; Matija Snuderl; Dan G. Blazer; E. Shelley Hwang; Rachel A. Greenup; Paul J. Mosca; Jeffrey K. Mito; Kyle C. Cuneo; Nicole Larrier; Erin K. O’Reilly; Richard F. Riedel; William C. Eward; David B. Strasfeld; Dai Fukumura; Rakesh K. Jain; W. David Lee; Linda G. Griffith; Moungi G. Bawendi; David G. Kirsch; Brian E. Brigman

A first-in-human phase 1 clinical trial of the PEGylated protease-activated fluorescent probe, LUM015, enables tumor imaging at a safe and tolerable dose in humans. Protease probe tested in humans Cancer cells secrete more of the protease cathepsin than healthy cells, partly as a way to enzymatically remodel their surroundings for tumor growth and metastasis. Whitley et al. developed an imaging probe that could be activated in the presence of these cathepsins, thus allowing surgeons to distinguish tumor margins intraoperatively. Their probe, called LUM015, was able to signal the presence of cancer in vivo in a mouse sarcoma model, and in a so-called “co-clinical trial” in 15 patients, it was safe and cleaved as expected in different types of tumor tissues. With favorable biodistribution and pharmacokinetics also demonstrated, protease-activated probes are now poised for further adaptation to tumor resections, signaling the presence of residual cancer. Local recurrence is a common cause of treatment failure for patients with solid tumors. Intraoperative detection of microscopic residual cancer in the tumor bed could be used to decrease the risk of a positive surgical margin, reduce rates of reexcision, and tailor adjuvant therapy. We used a protease-activated fluorescent imaging probe, LUM015, to detect cancer in vivo in a mouse model of soft tissue sarcoma (STS) and ex vivo in a first-in-human phase 1 clinical trial. In mice, intravenous injection of LUM015 labeled tumor cells, and residual fluorescence within the tumor bed predicted local recurrence. In 15 patients with STS or breast cancer, intravenous injection of LUM015 before surgery was well tolerated. Imaging of resected human tissues showed that fluorescence from tumor was significantly higher than fluorescence from normal tissues. LUM015 biodistribution, pharmacokinetic profiles, and metabolism were similar in mouse and human subjects. Tissue concentrations of LUM015 and its metabolites, including fluorescently labeled lysine, demonstrated that LUM015 is selectively distributed to tumors where it is activated by proteases. Experiments in mice with a constitutively active PEGylated fluorescent imaging probe support a model where tumor-selective probe distribution is a determinant of increased fluorescence in cancer. These co-clinical studies suggest that the tumor specificity of protease-activated imaging probes, such as LUM015, is dependent on both biodistribution and enzyme activity. Our first-in-human data support future clinical trials of LUM015 and other protease-sensitive probes.


International Journal of Cancer | 2015

A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins

Jenna L. Mueller; Henry L. Fu; Jeffrey K. Mito; Melodi Javid Whitley; Rhea Chitalia; Alaattin Erkanli; Leslie G. Dodd; Diana M. Cardona; Joseph Geradts; Rebecca Willett; David G. Kirsch; Nimmi Ramanujam

The goal of resection of soft tissue sarcomas located in the extremity is to preserve limb function while completely excising the tumor with a margin of normal tissue. With surgery alone, one‐third of patients with soft tissue sarcoma of the extremity will have local recurrence due to microscopic residual disease in the tumor bed. Currently, a limited number of intraoperative pathology‐based techniques are used to assess margin status; however, few have been widely adopted due to sampling error and time constraints. To aid in intraoperative diagnosis, we developed a quantitative optical microscopy toolbox, which includes acriflavine staining, fluorescence microscopy, and analytic techniques called sparse component analysis and circle transform to yield quantitative diagnosis of tumor margins. A series of variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82 and 75%. The utility of this approach was tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78 and 82%. For comparison, if pathology was used to predict local recurrence in this data set, it would achieve a sensitivity of 29% and a specificity of 71%. These results indicate a robust approach for detecting microscopic residual disease, which is an effective predictor of local recurrence.


Nature Communications | 2017

Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma

Jianguo Huang; Mark Chen; Melodi Javid Whitley; Hsuan-Cheng Kuo; Eric S. Xu; Andrea Walens; Yvonne M. Mowery; David Van Mater; William C. Eward; Diana M. Cardona; Lixia Luo; Yan Ma; Omar M. Lopez; Christopher E. Nelson; Jacqueline N. Robinson-Hamm; Anupama Reddy; Sandeep S. Dave; Charles A. Gersbach; Rebecca D. Dodd; David G. Kirsch

Genetically engineered mouse models that employ site-specific recombinase technology are important tools for cancer research but can be costly and time-consuming. The CRISPR-Cas9 system has been adapted to generate autochthonous tumours in mice, but how these tumours compare to tumours generated by conventional recombinase technology remains to be fully explored. Here we use CRISPR-Cas9 to generate multiple subtypes of primary sarcomas efficiently in wild type and genetically engineered mice. These data demonstrate that CRISPR-Cas9 can be used to generate multiple subtypes of soft tissue sarcomas in mice. Primary sarcomas generated with CRISPR-Cas9 and Cre recombinase technology had similar histology, growth kinetics, copy number variation and mutational load as assessed by whole exome sequencing. These results show that sarcomas generated with CRISPR-Cas9 technology are similar to sarcomas generated with conventional modelling techniques and suggest that CRISPR-Cas9 can be used to more rapidly generate genotypically and phenotypically similar cancers.


Veterinary Surgery | 2016

A Novel Imaging System Distinguishes Neoplastic from Normal Tissue During Resection of Soft Tissue Sarcomas and Mast Cell Tumors in Dogs.

Suzanne Bartholf DeWitt; William C. Eward; Cindy A. Eward; Alexander L. Lazarides; Melodi Javid Whitley; Jorge M. Ferrer; Brian E. Brigman; David G. Kirsch; John Berg

OBJECTIVE To assess the ability of a novel imaging system designed for intraoperative detection of residual cancer in tumor beds to distinguish neoplastic from normal tissue in dogs undergoing resection of soft tissue sarcoma (STS) and mast cell tumor (MCT). STUDY DESIGN Non-randomized prospective clinical trial. ANIMALS 12 dogs with STS and 7 dogs with MCT. METHODS A fluorescent imaging agent that is activated by proteases in vivo was administered to the dogs 4-6 or 24-26 hours before tumor resection. During surgery, a handheld imaging device was used to measure fluorescence intensity within the cancerous portion of the resected specimen and determine an intensity threshold for subsequent identification of cancer. Selected areas within the resected specimen and tumor bed were then imaged, and biopsies (n=101) were obtained from areas that did or did not have a fluorescence intensity exceeding the threshold. Results of intraoperative fluorescence and histology were compared. RESULTS The imaging system correctly distinguished cancer from normal tissue in 93/101 biopsies (92%). Using histology as the reference, the sensitivity and specificity of the imaging system for identification of cancer in biopsies were 92% and 92%, respectively. There were 10/19 (53%) dogs which exhibited transient facial erythema soon after injection of the imaging agent which responded to but was not consistently prevented by intravenous diphenhydramine. CONCLUSION A fluorescence-based imaging system designed for intraoperative use can distinguish canine soft tissue sarcoma (STS) and mast cell tumor (MCT) tissue from normal tissue with a high degree of accuracy. The system has potential to assist surgeons in assessing the adequacy of tumor resections during surgery, potentially reducing the risk of local tumor recurrence. Although responsive to antihistamines, the risk of hypersensitivity needs to be considered in light of the potential benefits of this imaging system in dogs.


Seminars in Radiation Oncology | 2015

Tailoring Adjuvant Radiation Therapy by Intraoperative Imaging to Detect Residual Cancer

Melodi Javid Whitley; Ralph Weissleder; David G. Kirsch

For many solid cancers, radiation therapy is offered as an adjuvant to surgical resection to lower rates of local recurrence and improve survival. However, a subset of patients treated with surgery alone will not have a local recurrence. Currently, there is no way to accurately determine which patients have microscopic residual disease in the tumor bed after surgery and therefore are most likely to benefit from adjuvant radiation therapy. To address this problem, a number of technologies have been developed to try to improve margin assessment of resected tissue and to detect residual cancer in the tumor bed. Moreover, some of these approaches have been translated from the preclinical arena into clinical trials. Here, we review different types of intraoperative molecular imaging systems for cancer. Optical imaging techniques like epi-illumination, fluorescence molecular tomography and optoacoustic imaging can be coupled with exogenous fluorescent imaging probes that accumulate in tumors passively via the enhanced permeability and retention effect or are targeted to tumor tissues based on affinity or enzyme activity. In these approaches, detection of fluorescence in the tumor bed may indicate residual disease. Protease activated probes have generated great interest because of their potential for leading to high tumor to normal contrast. Recently, the first Phase I clinical trial to assess the safety and activation of a protease activated probe was conducted. Spectroscopic methods like radiofrequency spectroscopy and Raman spectroscopy, which are based on energy absorption and scattering, respectively, have also been tested in humans and are able to distinguish between normal and tumors tissues intraoperatively. Most recently, multimodal contrast agents have been developed that target tumors and contain both fluorescent dyes and magnetic resonance imaging contrast agents, allowing for preoperative planning and intraoperative margin assessment with a single contrast agent. Further clinical testing of these various intraoperative imaging approaches may lead to more accurate methods for margin assessment and the intraoperative detection of microscopic residual disease, which could guide further resection and the use of adjuvant radiation therapy.


Theranostics | 2016

A Fluorescence-Guided Laser Ablation System for Removal of Residual Cancer in a Mouse Model of Soft Tissue Sarcoma

Alexander L. Lazarides; Melodi Javid Whitley; David B. Strasfeld; Diana M. Cardona; Jorge Ferrer; Jenna L. Mueller; Henry L. Fu; Suzanne Bartholf DeWitt; Brian E. Brigman; Nimmi Ramanujam; David G. Kirsch; William C. Eward

The treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.


Disease Models & Mechanisms | 2015

MicroRNA-16 suppresses metastasis in an orthotopic, but not autochthonous, mouse model of soft tissue sarcoma

Mohit Sachdeva; Melodi Javid Whitley; Jeffrey K. Mito; Yan-Yan Ma; Dina Lev; Diana M. Cardona; David G. Kirsch

ABSTRACT MicroRNAs (miRNAs) can regulate tumor cell invasion and metastasis in a tumor-specific manner. We recently demonstrated that global downregulation of miRNAs after deleting dicer can promote development of distant metastases in a mouse model of primary soft tissue sarcoma (STS). In this study, we identified miRNAs that are differentially downregulated in metastatic STS in both human and mouse, and investigated the role of these miRNAs in metastasis. miRNA- TaqMan PCR arrays showed a global downregulation of miRNAs in metastatic human sarcomas. Similar analysis in mouse metastatic sarcomas revealed overlap for several downregulated miRNAs including miR-16, miR-103, miR-146a, miR-223, miR-342 and miR-511. Restoration of these downregulated miRNAs in mouse primary sarcoma cell lines showed that miR-16, but not other downregulated miRNAs, was able to significantly suppress both migration and invasion in vitro, without altering cell proliferation. In addition, orthotopic transplantation of a sarcoma cell line stably expressing miR-16 into the muscle of immunocompromised mice revealed that restoration of miR-16 can significantly decrease lung metastasis in vivo. However, no change in the rate of lung metastasis was observed when miR-16 was deleted in mouse primary sarcomas at sarcoma initiation. Taken together, these results indicate that miR-16 can have metastasis-suppressing properties both in vitro and in vivo. However, the loss-of-function experiments in autochthonous tumors indicate that loss of miR-16 is not sufficient to promote metastasis in vivo. Summary: This work underscores the importance of studying cancer metastasis using in vivo model systems in addition to in vitro and transplant model systems.


PLOS ONE | 2016

Structured Illumination Microscopy and a Quantitative Image Analysis for the Detection of Positive Margins in a Pre-Clinical Genetically Engineered Mouse Model of Sarcoma.

Henry L. Fu; Jenna L. Mueller; Melodi Javid Whitley; Diana M. Cardona; Rebecca Willett; David G. Kirsch; Jq Brown; Nimmi Ramanujam

Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1×1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden’s index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.


Proceedings of SPIE | 2016

A dual energy CT study on vascular effects of gold nanoparticles in radiation therapy

Jocelyn Hoye; Katherine Deland; Melodi Javid Whitley; Yi Qi; Everett J. Moding; David G. Kirsch; Jennifer L. West; Cristian T. Badea

Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and CT imaging. AuNPs are delivered to tumors via the enhanced permeability and retention effect and they preferentially accumulate in close proximity to the tumor blood vessels. AuNPs produce low-energy, short-range photoelectrons during external beam radiation therapy (RT), boosting dose. This work is focused on understanding how tumor vascular permeability is influenced by AuNP-augmented radiation therapy (RT), and how this knowledge can potentially improve the delivery of additional nanoparticle-based chemotherapeutics. We use dual energy (DE) CT to detect accumulation of AuNPs and increased vascular permeability to liposomal iodine (i.e. a surrogate for chemotherapeutics with liposome encapsulation) following RT. We used sarcoma tumors generated in LSL-KrasG12D; p53FL/FL conditional mutant mice. A total of n=37 mice were used in this study. The treated mice were injected with 20 mg AuNP (0.1 ml/25 g mouse) 24 hours before delivery of 5 Gy RT (n=5), 10 Gy RT (n=3) or 20 Gy RT (n=6). The control mice received no AuNP injection and either no RT (n=6), 5 Gy RT (n=3), 10 Gy RT (n=3), 20 Gy RT (n=11). Twenty four hours post-RT, the mice were injected with liposomal iodine (0.3 ml/25 mouse) and imaged with DE-CT three days later. The results suggest that independent of any AuNP usage, RT levels of 10 Gy and 20 Gy increase the permeability of tumor vasculature to liposomal iodine and that the increase in permeability is dose-dependent. We found that the effect of RT on vasculature may already be at its maximum response i.e. saturated at 20 Gy, and therefore the addition of AuNPs had almost no added benefit. Similarly, at 5 Gy RT, our data suggests that there was no effect of AuNP augmentation on tumor vascular permeability. However, by using AuNPs with 10 Gy RT, we observed an increase in the vascular permeability, however this is not yet statistically significant due to the small number of mice in these groups. Such an approach can be used together with a liposomal drug delivery system to increase specific tumor delivery of chemotherapeutics. Our method has the potential to significantly improve tumor therapy and reduce the side effects from both RT and chemotherapy.

Collaboration


Dive into the Melodi Javid Whitley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Strasfeld

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge