Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melodie R. Winawer is active.

Publication


Featured researches published by Melodie R. Winawer.


Nature | 2013

De novo mutations in epileptic encephalopathies

Andrew S. Allen; Samuel F. Berkovic; Patrick Cossette; Norman Delanty; Dennis J. Dlugos; Evan E. Eichler; Michael P. Epstein; Tracy A. Glauser; David B. Goldstein; Yujun Han; Erin L. Heinzen; Yuki Hitomi; Katherine B. Howell; Michael R. Johnson; Ruben Kuzniecky; Daniel H. Lowenstein; Yi Fan Lu; Maura Madou; Anthony G Marson; Mefford Hc; Sahar Esmaeeli Nieh; Terence J. O'Brien; Ruth Ottman; Slavé Petrovski; Annapurna Poduri; Elizabeth K. Ruzzo; Ingrid E. Scheffer; Elliott H. Sherr; Christopher J. Yuskaitis; Bassel Abou-Khalil

Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox–Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the ∼4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 × 10−3). Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are P = 4.1 × 10−10 and P = 7.8 × 10−12, respectively. Other genes with de novo mutations in this cohort include CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HNRNPU, IQSEC2, MTOR and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the fragile X protein (P < 10−8), as has been reported previously for autism spectrum disorders.


Nature Genetics | 2002

Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features

Sergey Kalachikov; Oleg V. Evgrafov; Barbara M. Ross; Melodie R. Winawer; Christie Barker-Cummings; Filippo Martinelli Boneschi; Chang Choi; Pavel Morozov; Kamna Das; Elita Teplitskaya; Andrew Yu; Eftihia Cayanis; Graciela K. Penchaszadeh; Andreas H. Kottmann; Timothy A. Pedley; W. Allen Hauser; Ruth Ottman; T. Conrad Gilliam

The epilepsies are a common, clinically heterogeneous group of disorders defined by recurrent unprovoked seizures. Here we describe identification of the causative gene in autosomal-dominant partial epilepsy with auditory features (ADPEAF, MIM 600512), a rare form of idiopathic lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances. We constructed a complete, 4.2-Mb physical map across the genetically implicated disease-gene region, identified 28 putative genes (Fig. 1) and resequenced all or part of 21 genes before identifying presumptive mutations in one copy of the leucine-rich, glioma-inactivated 1 gene (LGI1) in each of five families with ADPEAF. Previous studies have indicated that loss of both copies of LGI1 promotes glial tumor progression. We show that the expression pattern of mouse Lgi1 is predominantly neuronal and is consistent with the anatomic regions involved in temporal lobe epilepsy. Discovery of LGI1 as a cause of ADPEAF suggests new avenues for research on pathogenic mechanisms of idiopathic epilepsies.


Neurology | 2004

LGI1 mutations in autosomal dominant partial epilepsy with auditory features

Ruth Ottman; Melodie R. Winawer; Sergey Kalachikov; Christie Barker-Cummings; T. C. Gilliam; Timothy A. Pedley; W. A. Hauser

Objectives: Mutations in LGI1 cause autosomal dominant partial epilepsy with auditory features (ADPEAF), a form of familial temporal lobe epilepsy with auditory ictal manifestations. The authors aimed to determine what proportion of ADPEAF families carries a mutation, to estimate the penetrance of identified mutations, and to identify clinical features that distinguish families with and without mutations. Methods: The authors sequenced LGI1 in 10 newly described ADPEAF families and analyzed clinical features in these families and others with mutations reported previously. Results: Three of the families had missense mutations in LGI1 (C42R, I298T, and A110D). Penetrance was 54% in eight families with LGI1 mutations the authors have identified so far (five reported previously and three reported here). Excluding the original linkage family, the authors have found mutations in 50% (7/14) of tested families. Families with and without mutations had similar clinical features, but those with mutations contained significantly more subjects with auditory symptoms and significantly fewer with autonomic symptoms. In families with mutations, the most common auditory symptom type was simple, unformed sounds (e.g., buzzing and ringing). In two of the newly identified families with mutations, some subjects with mutations had idiopathic generalized epilepsies. Conclusions: LGI1 mutations are a common cause of autosomal dominant partial epilepsy with auditory features. Current data do not reveal a clinical feature that clearly predicts which families with autosomal dominant partial epilepsy with auditory features have a mutation. Some families with LGI1 mutations contain individuals with idiopathic generalized epilepsies. This could result from either an effect of LGI1 on risk for generalized epilepsy or an effect of co-occurring idiopathic generalized epilepsy-specific genes in these families.


Neurology | 2000

Autosomal dominant partial epilepsy with auditory features: Defining the phenotype

Melodie R. Winawer; Ruth Ottman; W. Allen Hauser; Timothy A. Pedley

Article abstract The authors previously reported linkage to chromosome 10q22-24 for autosomal dominant partial epilepsy with auditory features. This study describes seizure semiology in the original linkage family in further detail. Auditory hallucinations were most common, but other sensory symptoms (visual, olfactory, vertiginous, and cephalic) were also reported. Autonomic, psychic, and motor symptoms were less common. The clinical semiology points to a lateral temporal seizure origin. Auditory hallucinations, the most striking clinical feature, are useful for identifying new families with this synome.


Epilepsia | 2013

Issues related to symptomatic and disease‐modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy

Amy R. Brooks-Kayal; Kevin G. Bath; Anne T. Berg; Aristea S. Galanopoulou; Gregory L. Holmes; Frances E. Jensen; Andres M. Kanner; Terence J. O'Brien; Vicky Whittemore; Melodie R. Winawer; Manisha Patel; Helen E. Scharfman

Many symptoms of neurologic or psychiatric illness—such as cognitive impairment, depression, anxiety, attention deficits, and migraine—occur more frequently in people with epilepsy than in the general population. These diverse comorbidities present an underappreciated problem for people with epilepsy and their caregivers because they decrease quality of life, complicate treatment, and increase mortality. In fact, it has been suggested that comorbidities can have a greater effect on quality of life in people with epilepsy than the seizures themselves. There is increasing recognition of the frequency and impact of cognitive and behavioral comorbidities of epilepsy, highlighted in the 2012 Institute of Medicine report on epilepsy. Comorbidities have also been acknowledged, as a National Institutes of Health (NIH) Benchmark area for research in epilepsy. However, relatively little progress has been made in developing new therapies directed specifically at comorbidities. On the other hand, there have been many advances in understanding underlying mechanisms. These advances have made it possible to identify novel targets for therapy and prevention. As part of the International League Against Epilepsy/American Epilepsy Society workshop on preclinical therapy development for epilepsy, our working group considered the current state of understanding related to terminology, models, and strategies for therapy development for the comorbidities of epilepsy. Herein we summarize our findings and suggest ways to accelerate development of new therapies. We also consider important issues to improve research including those related to methodology, nonpharmacologic therapies, biomarkers, and infrastructure.


Epilepsia | 2002

Four New Families with Autosomal Dominant Partial Epilepsy with Auditory Features: Clinical Description and Linkage to Chromosome 10q24

Melodie R. Winawer; Filippo Martinelli Boneschi; Christie Barker-Cummings; Joseph H. Lee; Jianjun Liu; Constantine Mekios; T. Conrad Gilliam; Timothy A. Pedley; W. Allen Hauser; Ruth Ottman

Summary:  Purpose: Autosomal dominant partial epilepsy with auditory features (ADPEAF) is a rare form of nonprogressive lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances. The gene predisposing to this syndrome was localized to a 10‐cM region on chromosome 10q24. We assessed clinical features and linkage evidence in four newly ascertained families with ADPEAF, to refine the clinical phenotype and confirm the genetic localization.


Neurology | 2005

Familial clustering of seizure types within the idiopathic generalized epilepsies

Melodie R. Winawer; Carla Marini; Bronwyn E. Grinton; Daniel Rabinowitz; Samuel F. Berkovic; Ingrid E. Scheffer; Ruth Ottman

Objective: To examine the genetic relationships among epilepsies with different seizure types—myoclonic, absence, and generalized tonic-clonic—within the idiopathic generalized epilepsies (IGEs). Background: Careful phenotype definition in the epilepsies may allow division into groups that share susceptibility genes. Examination of seizure type, a phenotypic characteristic less complex than IGE syndrome, may help to define more homogeneous subgroups. Methods: Using the approach that found evidence of distinct genetic effects on myoclonic vs absence seizures in families from the Epilepsy Family Study of Columbia University, the authors examined an independent sample of families from Australia and Israel. They also examined the familial clustering of generalized tonic-clonic seizures (GTCs) within the IGEs in two combined data sets. Families were defined as concordant if all affected members had the same type of seizure or IGE syndrome, as appropriate for the analysis performed. Results: The proportion of families concordant for myoclonic vs absence seizures was greater than expected by chance in the Australian families. In addition, GTCs clustered in families with IGEs to a degree greater than expected by chance. Conclusions: These results provide additional evidence for distinct genetic effects on myoclonic vs absence seizures in an independent set of families and suggest that there is a genetic influence on the occurrence of generalized tonic-clonic seizures within the idiopathic generalized epilepsies.


Lancet Neurology | 2017

Ultra-rare genetic variation in common epilepsies: a case-control sequencing study

Andrew S. Allen; Susannah T. Bellows; Samuel F. Berkovic; Joshua Bridgers; Rosemary Burgess; Gianpiero L. Cavalleri; Seo-Kyung Chung; Patrick Cossette; Norman Delanty; Dennis J. Dlugos; Michael P. Epstein; Catharine Freyer; David B. Goldstein; Erin L. Heinzen; Michael S. Hildebrand; Michael R. Johnson; Ruben Kuzniecky; Daniel H. Lowenstein; Anthony G Marson; Richard Mayeux; Caroline Mebane; Mefford Hc; Terence J. O'Brien; Ruth Ottman; Steven Petrou; Slavgé Petrovski; William O. Pickrell; Annapurna Poduri; Rodney A. Radtke; Mark I. Rees

BACKGROUND Despite progress in understanding the genetics of rare epilepsies, the more common epilepsies have proven less amenable to traditional gene-discovery analyses. We aimed to assess the contribution of ultra-rare genetic variation to common epilepsies. METHODS We did a case-control sequencing study with exome sequence data from unrelated individuals clinically evaluated for one of the two most common epilepsy syndromes: familial genetic generalised epilepsy, or familial or sporadic non-acquired focal epilepsy. Individuals of any age were recruited between Nov 26, 2007, and Aug 2, 2013, through the multicentre Epilepsy Phenome/Genome Project and Epi4K collaborations, and samples were sequenced at the Institute for Genomic Medicine (New York, USA) between Feb 6, 2013, and Aug 18, 2015. To identify epilepsy risk signals, we tested all protein-coding genes for an excess of ultra-rare genetic variation among the cases, compared with control samples with no known epilepsy or epilepsy comorbidity sequenced through unrelated studies. FINDINGS We separately compared the sequence data from 640 individuals with familial genetic generalised epilepsy and 525 individuals with familial non-acquired focal epilepsy to the same group of 3877 controls, and found significantly higher rates of ultra-rare deleterious variation in genes established as causative for dominant epilepsy disorders (familial genetic generalised epilepsy: odd ratio [OR] 2·3, 95% CI 1·7-3·2, p=9·1 × 10-8; familial non-acquired focal epilepsy 3·6, 2·7-4·9, p=1·1 × 10-17). Comparison of an additional cohort of 662 individuals with sporadic non-acquired focal epilepsy to controls did not identify study-wide significant signals. For the individuals with familial non-acquired focal epilepsy, we found that five known epilepsy genes ranked as the top five genes enriched for ultra-rare deleterious variation. After accounting for the control carrier rate, we estimate that these five genes contribute to the risk of epilepsy in approximately 8% of individuals with familial non-acquired focal epilepsy. Our analyses showed that no individual gene was significantly associated with familial genetic generalised epilepsy; however, known epilepsy genes had lower p values relative to the rest of the protein-coding genes (p=5·8 × 10-8) that were lower than expected from a random sampling of genes. INTERPRETATION We identified excess ultra-rare variation in known epilepsy genes, which establishes a clear connection between the genetics of common and rare, severe epilepsies, and shows that the variants responsible for epilepsy risk are exceptionally rare in the general population. Our results suggest that the emerging paradigm of targeting of treatments to the genetic cause in rare devastating epilepsies might also extend to a proportion of common epilepsies. These findings might allow clinicians to broadly explain the cause of these syndromes to patients, and lay the foundation for possible precision treatments in the future. FUNDING National Institute of Neurological Disorders and Stroke (NINDS), and Epilepsy Research UK.


Neurology | 2003

Genetic influences on myoclonic and absence seizures

Melodie R. Winawer; Daniel Rabinowitz; Timothy A. Pedley; W. A. Hauser; Ruth Ottman

Objective: To examine the relationship between genotype and phenotype in idiopathic generalized epilepsies (IGEs) using a novel approach that focuses on seizure type rather than syndrome. Methods: The authors evaluated whether the genetic effects on myoclonic seizures differ from the genetic effects on absence seizures. For this purpose, they studied 34 families containing 2 or more members with IGEs and assessed whether the number of families concordant for seizure type exceeded that expected by chance. The authors performed a similar analysis to examine the genetic contributions to juvenile myoclonic epilepsy (JME), juvenile absence epilepsy (JAE), and childhood absence epilepsy (CAE). Results: The observed number of families concordant for seizure type (myoclonic, absence, or both) was greater than expected (20 vs 7.51; p < 0.0001). The observed number of families concordant for syndrome was greater than expected when JME was compared with absence epilepsies (JAE+CAE) (17 vs 11.9; p < 0.012) but not when JAE was compared with CAE (8 vs 6.82; p = 0.516). Conclusions: These results provide evidence for distinct genetic effects on absence and myoclonic seizures, suggesting that examining the two seizure types separately would be useful in linkage studies of idiopathic generalized epilepsies. The approach presented here can also be used to discover other clinical features that could direct division of epilepsies into groups likely to share susceptibility genes.


Epilepsia | 2010

Increased seizure severity and seizure-related death in mice lacking HCN1 channels.

Bina Santoro; Janet Lee; Dario J. Englot; Sandra S. Gildersleeve; Rebecca A. Piskorowski; Steven A. Siegelbaum; Melodie R. Winawer; Hal Blumenfeld

Persistent down‐regulation in the expression of the hyperpolarization‐activated HCN1 cation channel, a key determinant of intrinsic neuronal excitability, has been observed in febrile seizure, temporal lobe epilepsy, and generalized epilepsy animal models, as well as in patients with epilepsy. However, the role and importance of HCN1 down‐regulation for seizure activity is unclear. To address this question we determined the susceptibility of mice with either a general or forebrain‐restricted deletion of HCN1 to limbic seizure induction by amygdala kindling or pilocarpine administration. Loss of HCN1 expression in both mouse lines is associated with higher seizure severity and higher seizure‐related mortality, independent of the seizure‐induction method used. Therefore, down‐regulation of HCN1 associated with human epilepsy and rodent models may be a contributing factor in seizure behavior.

Collaboration


Dive into the Melodie R. Winawer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge