Meltem Elitas
Sabancı University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meltem Elitas.
IEEE Transactions on Industrial Electronics | 2008
Asif Sabanovic; Meltem Elitas; Kouhei Ohnishi
In this paper, a sliding-mode-based design framework for fully actuated mechanical multibody system is discussed. The framework is based on the possibility to represent complex motion as a collection of tasks and to find effective mapping of the system coordinates that allows decoupling task and constraint control so one is able to enforce concurrently, or in certain time succession, the task and the constraints. The approach seems naturally encompassing the control of motion systems in interaction, and it allows application to bilateral control, multilateral control, etc. Such an approach leads to a more natural interpretation of the system tasks, simpler controller design, and easier establishment of the systems hierarchy. It allows a unified mathematical treatment of task control in the presence of constraints required to be satisfied by the system coordinates. In order to show the applicability of the proposed techniques, simulation and experimental results for high-precision systems in microsystem assembly tasks and bilateral control systems are presented.
Genome Medicine | 2013
Wei Wei; Young Shik Shin; Chao Ma; Jun Wang; Meltem Elitas; Rong Fan; James R. Heath
Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing approaches for directly elucidating phosphoprotein signaling networks in cancer cells or for capturing high-resolution snapshots of immune system function in patients with various disease conditions. We discuss advances in single-cell proteomics platforms, with an emphasis on microchip methods. These methods can provide a direct correlation of morphological, functional and molecular signatures at the single-cell level. We also provide examples of how those platforms are being applied to both fundamental biology and clinical studies, focusing on immune-system monitoring and phosphoprotein signaling networks in cancer.
international conference on industrial technology | 2006
Shahzad Khan; Meltem Elitas; Emrah Deniz Kunt; Asif Sabanovic
In this paper discrete sliding mode control (SMC) of Piezo actuator is demonstrated in order to achieve a very high accuracy in Nano-scale with the desired dynamics. In spite of the fast dynamics of the Piezo actuator the problem of chattering is eliminated with the SMC control structure. The Piezo actuator suffers from hysteresis loop which is the inherent property and it gives rise to the dominant non-linearity in the system. The proposed SMC control structure has been proved to deliver chattering free motion along with the compensation of the non linearity present due to hysteresis in the system. To further enhance the accuracy of the closed loop system and to be invariant to changes in the plant parameters a robust disturbance observer is designed on SMC framework by taking into consideration the lumped nominal plant parameters. Experimental results for closed loop position and micromanipulation applications are presented in order to verify the Nano-scale accuracy.
international symposium on industrial electronics | 2007
Asif Sabanovic; Meltem Elitas
Design of a motion control system should take into account (a) unconstrained motion performed without interaction with environment or other system, and (b) constrained motion with system in contact with environment or another system or has certain functional interaction with another system. Control in both cases can be formulated in terms of maintaining desired system configuration what makes essentially the same structure for common tasks: trajectory tracking, interaction force control, compliance control etc. It will be shown that the same design approach can be used for systems that maintain some functional relation - like bilateral or multilateral systems, relation among mobile robots or control of haptic systems.
Frontiers in Oncology | 2013
Chao Ma; Rong Fan; Meltem Elitas
In the past decade, significant progresses have taken place in the field of cancer immunotherapeutics, which are being developed for most human cancers. New immunotherapeutics, such as Ipilimumab (anti-CTLA-4), have been approved for clinical treatment; cell-based immunotherapies such as adoptive cell transfer (ACT) have either passed the final stage of human studies (e.g., Sipuleucel-T) for the treatment of selected neoplastic malignancies or reached the stage of phase II/III clinical trials. Immunotherapetics has become a sophisticated field. Multimodal therapeutic regimens comprising several functional modules (up to five in the case of ACT) have been developed to provide focused therapeutic responses with improved efficacy and reduced side-effects. However, a major challenge remains: the lack of effective and clinically applicable immune assessment methods. Due to the complexity of antitumor immune responses within patients, it is difficult to provide comprehensive assessment of therapeutic efficacy and mechanism. To address this challenge, new technologies have been developed to directly profile the cellular immune functions and the functional heterogeneity. With the goal to measure the functional proteomics of single immune cells, these technologies are informative, sensitive, high-throughput, and highly multiplex. They have been used to uncover new knowledge of cellular immune functions and have been utilized for rapid, informative, and longitudinal monitoring of immune response in clinical anti-cancer treatment. In addition, new computational tools are required to integrate high-dimensional data sets generated from the comprehensive, single cell level measurements of patient’s immune responses to guide accurate and definitive diagnostic decision. These single cell immune function assessment tools will likely contribute to new understanding of therapy mechanism, pre-treatment stratification of patients, and ongoing therapeutic monitoring and assessment.
international workshop on advanced motion control | 2008
Meltem Elitas; Shahzad Khan; Ahmet Ozcan Nergiz; Asif Sabanovic
Design of a motion control system should take into account (a) unconstrained motion performed without interaction with environment or any other system, and (b) constrained motion with system in contact with environment or other systems. Control in both cases can be formulated in terms of maintaining desired system configuration what makes essentially the same structure for common tasks: trajectory tracking, interaction force control, compliance control etc. The same design approach can be used to formulate control in bilateral systems aimed to maintain desired functional relations between human and environment through master and slave motion systems. Implementation of the methodology is currently being pursued with a custom built tele-micromanipulation setup and preliminary results concerning force/position tracking and transparency between master and slave are clearly demonstrated.
international symposium on micro-nanomechatronics and human science | 2007
Shahzad Khan; Ahmet Ozcan Nergiz; Meltem Elitas; Volkan Patoglu; Asif Sabanovic
A hybrid force-position controller based man-machine interface for manipulation of micro objects through pushing with a micro cantilever is presented. Visual feedback is employed to detect position and orientation of a micro particle and a piezoresistive AFM cantilever is automatically positioned to align the line of action of interaction forces in a way that will ensure the particle to track a desired trajectory. Control of the interaction force is delegated to a human operator through scaled bilateral teleoperation. A custom tele-micromanipulation setup is built for testing and preliminary experiments of controlled pushing to achieve pure translational motion of rectangular micro objects are implemented.
Sensors | 2017
Yagmur Yildizhan; Nurdan Erdem; Monsur Islam; Rodrigo Martinez-Duarte; Meltem Elitas
Blood has been the most reliable body fluid commonly used for the diagnosis of diseases. Although there have been promising investigations for the development of novel lab-on-a-chip devices to utilize other body fluids such as urine and sweat samples in diagnosis, their stability remains a problem that limits the reliability and accuracy of readouts. Hence, accurate and quantitative separation and characterization of blood cells are still crucial. The first step in achieving high-resolution characteristics for specific cell subpopulations from the whole blood is the isolation of pure cell populations from a mixture of cell suspensions. Second, live cells need to be purified from dead cells; otherwise, dead cells might introduce biases in the measurements. In addition, the separation and characterization methods being used must preserve the genetic and phenotypic properties of the cells. Among the characterization and separation approaches, dielectrophoresis (DEP) is one of the oldest and most efficient label-free quantification methods, which directly purifies and characterizes cells using their intrinsic, physical properties. In this study, we present the dielectrophoretic separation and characterization of live and dead monocytes using 3D carbon-electrodes. Our approach successfully removed the dead monocytes while preserving the viability of the live monocytes. Therefore, when blood analyses and disease diagnosis are performed with enriched, live monocyte populations, this approach will reduce the dead-cell contamination risk and achieve more reliable and accurate test results.
Biomedical Physics & Engineering Express | 2017
Meltem Elitas; Neeraj Dhar; Katrin Schneider; Ana Valero; Thomas Braschler; John D. McKinney; Philippe Renaud
Real-time, quantitative characterization of cells at single-cell resolution, particularly while maintain- ing their intrinsic properties and without affecting cellular processes, is of primary importance in modern biological assays. Dielectrophoresis is a label-free, real-time, and quantitative technique, and is amenable to integration with other techniques, thus providing new and powerful tools for biology and medicine. In this study we present dielectrophoresis as a characterization tool for Mycobacterium smegmatis single cells. Understanding how phenotypically variant M. smegmatis cells respond dielectrophoretically when subject to the same electric field, could reveal underlying membrane altering mechanisms related to cell death, drug-tolerance, and drug-resistance. In this study, we dielectrophoretically characterized live, heat-treated and antibiotic-treated bacteria. Our results present quantifications of cellular behaviors associated with membrane-specific cell damages and demonstrate adequacy of dielectrophoretic devices in point-of-care diagnostic and monitoring for bacterial infections.
World Journal of Engineering | 2017
Fiaz Ahmad; Akhtar Rasool; Esref Emre Ozsoy; Asif Sabanovic; Meltem Elitas
Purpose This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control. Design/methodology/approach Cascaded control structure is an attractive control scheme for DC-DC power converters. It has a two-loop structure where the outer loop contains PI controller and the inner loop uses sliding mode control (SMC). This structure thus combines the merits of both the control schemes. However, there are some issues that have prohibited its adoption in industry, the discontinuous nature of SMC which leads to variable switching frequency operation and is hard to realize practically. This paper attempts to overcome this issue by changing the discontinuous functionality of SMC to continuous by utilizing the concept of equivalent control. Findings The robustness of the controller designed is verified by considering various cases, namely, ideal case with no uncertainties, sudden variation of input supply voltage, load resistance, reference voltage, circuit-parameters and for noise disturbance. The controller effectiveness is validated by simulating the DC-DC boost and Cuk converters in SimPowerSystems toolbox of MATLAB/Simulink. It is shown that the performance of the proposed controller is satisfactory, and both reference output voltage and inductor current are tracked with little or no sensitivity to disturbances. Originality/value The results for various scenarios are interesting and show that the controller works quite satisfactorily for all the simulated uncertainties.