Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melvin R. Frei is active.

Publication


Featured researches published by Melvin R. Frei.


Radiation Research | 1997

Frequency of micronuclei in the peripheral blood and bone marrow of cancer-prone mice chronically exposed to 2450 MHz radiofrequency radiation.

Vijayalaxmi; Melvin R. Frei; Steve J. Dusch; Veronica Guel; Martin L. Meltz; James R. Jauchem

C3H/HeJ mice, which are prone to mammary tumors, were exposed for 20 h/day, 7 days/week, over 18 months to continuous-wave 2450 MHz radiofrequency (RF) radiation in circularly polarized wave guides at a whole-body average specific absorption rate of 1.0 W/kg. Sham-exposed mice were used as controls. The positive controls were the sentinel mice treated with mitomycin C during the last 24 h before necropsy. At the end of the 18 months, all mice were necropsied. Peripheral blood and bone marrow smears were examined for the extent of genotoxicity as indicated by the presence of micronuclei in polychromatic erythrocytes (PCEs). The results indicate that the incidence of micronuclei/1,000 PCEs was not significantly different between groups exposed to RF radiation (62 mice) and sham-exposed groups (58 mice), and the mean frequencies were 4.5 +/- 1.23 and 4.0 +/- 1.12 in peripheral blood and 6.1 +/- 1.78 and 5.7 +/- 1.60 in bone marrow, respectively. In contrast, the positive controls (7 mice) showed a significantly elevated incidence of micronuclei/1,000 PCEs in peripheral blood and bone marrow, and the mean frequencies were 50.9 +/- 6.18 and 55.2 +/- 4.65, respectively. When the animals with mammary tumors were considered separately, there were no significant differences in the incidence of micronuclei/1,000 PCEs between the group exposed to RF radiation (12 mice) and the sham-exposed group (8 mice), and the mean frequencies were 4.6 +/- 1.03 and 4.1 +/- 0.89 in peripheral blood and 6.1 +/- 1.76 and 5.5 +/- 1.51 in bone marrow, respectively. Thus there was no evidence for genotoxicity in mice prone to mammary tumors that were exposed chronically to 2450 MHz RF radiation compared with sham-exposed controls.


Bioelectromagnetics | 1998

Chronic exposure of cancer-prone mice to low-level 2450 MHz radiofrequency radiation

Melvin R. Frei; Rick E. Berger; Steven J. Dusch; Veronica Guel; James R. Jauchem; James H. Merritt; Michael A. Stedham

The purpose of this study was to determine whether chronic, low-level exposure of mammary-tumor-prone mice to 2450 MHz radiofrequency radiation (RFR) promotes an earlier onset (decreased latency), a greater total incidence, or a faster growth rate of mammary tumors. One hundred C3H/ HeJ mice were exposed in circularly polarized waveguides (CWG) for 18 months (20 h/day, 7 days/wk) to continuous-wave, 2450 MHz RFR at a whole body average specific absorption rate (SAR) of 0.3 W/kg; 100 mice were sham exposed. Before exposure, SARs were determined calorimetrically; during experimentation, SARs were monitored by differential power measurement. All animals were visually inspected twice daily and were removed from the CWG cages for a weekly inspection, palpation, and weighing. From the time of detection, tumor size was measured weekly. Animals that died spontaneously, became moribund, or were killed after 18 months of exposure were completely necropsied; tissues were fixed and subjected to histopathological evaluations. Results showed no significant difference in weight profiles between sham-irradiated and irradiated mice. Concerning mammary carcinomas, there was no significant difference between groups with respect to palpated tumor incidence (sham = 52%; irradiated = 44%), latency to tumor onset (sham = 62.3 +/- 1.2 wk; irradiated = 64.0 +/- 1.6 wk), and rate of tumor growth. In general, histopathological examination revealed no significant differences in numbers of malignant, metastatic, or benign neoplasms between the two groups; a significantly greater incidence of alveolar-bronchiolar adenoma in the sham-irradiated mice was the only exception. In addition, survival analysis showed no significant difference in cumulative percent survival between sham and irradiated animals. Thus, results indicate that under the conditions of this study, long-term, low-level exposure of mammary-tumor-prone mice to 2450 MHz RFR did not affect mammary tumor incidence, latency to tumor onset, tumor growth rate, or animal longevity when compared with sham-irradiated controls.


Radiation Research | 1997

Long-term, low-level exposure of mice prone to mammary tumors to 435 MHz radiofrequency radiation

James C. Toler; Wesley W. Shelton; Melvin R. Frei; James H. Merritt; Michael A. Stedham

The purpose of this study was to determine if chronic, low-level exposure of mice prone to mammary tumors to 435 MHz radiofrequency (RF) radiation promotes an earlier onset, a faster growth rate or a greater total incidence of mammary tumors than in sham-exposed controls. Two hundred female C3H/HeJ mice were exposed for 21 months (22 h/day, 7 days/week) to a horizontally polarized 435 MHz pulse-wave (1.0 micros pulse width, 1.0 kHz pulse rate) RF radiation environment with an incident power density of 1.0 mW/cm2 (SAR = 0.32 W/kg). An additional 200 mice were sham-exposed. Animals that died spontaneously, became moribund or were euthanized after 21 months of exposure were completely necropsied; tissues were subjected to histopathological examinations. Concerning mammary carcinomas, there were no significant differences between the two groups with respect to latency to tumor onset, tumor growth rate and overall tumor incidence. Histopathological examination revealed no significant differences in numbers of malignant, metastatic or benign neoplasms between groups. Survival probability was estimated by the Kaplan-Meier method; no significant difference between groups was noted (Coxs test). Under the conditions of this long-term study, low-level exposure of mice prone to mammary tumors to 435 MHz RF radiation did not affect the incidence of mammary tumors, tumor growth rate, latency to tumor onset or animal longevity when compared to sham-exposed controls.


Radiation Research | 1998

Chronic, low-level (1.0 W/kg) exposure of mice prone to mammary cancer to 2450 MHz microwaves.

Melvin R. Frei; James R. Jauchem; Steven J. Dusch; James H. Merritt; Rick E. Berger; Michael A. Stedham

In a previous study (Frei et al., Bioelectromagnetics 19, 20-31, 1998), we showed that low-level (0.3 W/kg), long-term exposure of mice prone to mammary tumors to 2450 MHz radiofrequency (RF) radiation did not affect the incidence of mammary tumors, latency to tumor onset, tumor growth rate or animal survival when compared to sham-irradiated animals. In the current study, the specific absorption rate (SAR) was increased from 0.3 W/kg to 1.0 W/kg. The same biological end points were used. One hundred C3H/HeJ mice were exposed in circularly polarized waveguides for 78 weeks (20 h/day, 7 days/week) to continuous-wave, 2450 MHz RF radiation; 100 mice were sham-exposed. There was no significant difference between exposed and sham-exposed groups with respect to the incidence of palpated mammary tumors (sham-exposed = 30%; irradiated = 38%), latency to tumor onset (sham-exposed = 62.0 +/- 2.3 weeks; irradiated = 62.5 +/- 2.2 weeks) and rate of tumor growth. Histopathological evaluations revealed no significant difference in numbers of malignant, metastatic or benign neoplasms between the two groups. Thus long-term exposures of mice prone to mammary tumors to 2450 MHz RF radiation at SARs of 0.3 and 1.0 W/kg had no significant effects when compared to sham-irradiated animals.


Radiation Research | 2001

Repeated exposure of C3H/HeJ mice to ultra-wideband electromagnetic pulses: lack of effects on mammary tumors.

James R. Jauchem; Kathy L. Ryan; Melvin R. Frei; Steven J. Dusch; Heather M. Lehnert; Robert M. Kovatch

Abstract Jauchem, J. R., Ryan, K. L., Frei, M. R., Dusch, S. J., Lehnert, H. M. and Kovatch, R. M. Repeated Exposure of C3H/HeJ Mice to Ultra-wideband Electromagnetic Pulses: Lack of Effects on Mammary Tumors. It has been suggested that chronic, low-level exposure to radiofrequency (RF) radiation may promote the formation of tumors. Previous studies, however, showed that low-level, long-term exposure of mammary tumor-prone mice to 435 MHz or 2450 MHz RF radiation did not affect the incidence of mammary tumors. In this study, we investigated the effects of exposure to a unique type of electromagnetic energy: pulses composed of an ultra-wideband (UWB) of frequencies, including those in the RF range. One hundred C3H/HeJ mice were exposed to UWB pulses (rise time 176 ps, fall time 3.5 ns, pulse width 1.9 ns, peak E-field 40 kV/m, repetition rate 1 kHz). Each animal was exposed for 2 min once a week for 12 weeks. One hundred mice were used as sham controls. There were no significant differences between groups with respect to incidence of palpated mammary tumors, latency to tumor onset, rate of tumor growth, or animal survival. Histopathological evaluations revealed no significant differences between the two groups in numbers of neoplasms in all tissues studied (lymphoreticular tissue, thymus, respiratory, digestive and urinary tracts, reproductive, mammary and endocrine systems, and skin). Our major finding was the lack of effects of UWB-pulse exposure on promotion of mammary tumors in a well-established animal model of mammary cancer.


Bioelectromagnetics | 1998

Ultra-wideband electromagnetic pulses: Lack of effects on heart rate and blood pressure during two-minute exposures of rats †

James R. Jauchem; Ronald L. Seaman; Heather M. Lehnert; Satnam P. Mathur; Kathy L. Ryan; Melvin R. Frei; William D. Hurt

Exposure to fast-rise-time ultra-wideband (UWB) electromagnetic pulses has been postulated to result in effects on biological tissue (including the cardiovascular system). In the current study, 10 anesthetized Sprague-Dawley rats were exposed to pulses produced by a Sandia UWB pulse generator (average values of exposures over three different pulse repetition rates: rise time, 174-218 ps; peak E field, 87-104 kV/m; pulse duration, 0.97-0.99 ns). Exposures to 50, 500 and 1000 pulses/s resulted in no significant changes in heart rate or mean arterial blood pressure measured every 30 s during 2 min of exposure and for 2 min after the exposure. The results suggest that acute UWB whole-body exposure under these conditions does not have an immediate detrimental effect on these cardiovascular system variables in anesthetized rats.


IEEE Transactions on Biomedical Engineering | 1999

Lack of effects on heart rate and blood pressure in ketamine-anesthetized rats briefly exposed to ultra-wideband electromagnetic pulses

James R. Jauchem; Melvin R. Frei; Kathy L. Ryan; James H. Merritt; Michael R. Murphy

Fourteen Sprague-Dawley rats were exposed to pulses produced by a Bournlea ultra-wideband (UWB) pulse generator (rise time, 318-337 ps; maximum E field, 19-21 kV/m). Exposures at a repetition frequency of 1 kHz for 0.5 s or to repetitive pulse trains (2-s exposure periods alternating with 2 s of no exposure, for a total of 2 min) resulted in no significant changes in heart rate or mean arterial blood pressure. These results suggest that acute whole-body exposure to UWB pulses does not have a detrimental effect on the cardiovascular system.


Shock | 1995

SUSTAINED 35-GHz RADIOFREQUENCY IRRADIATION INDUCES CIRCULATORY FAILURE

Melvin R. Frei; Kathy L. Ryan; Rick E. Berger; James R. Jauchem

The objective of this study was to determine the thermal distribution and concomitant cardiovascular changes produced by whole-body exposure of ketamine-anesthetized rats to radiofrequency radiation of millimeter wave (MMW) length. Rats (n = 13) were implanted with a flow probe on the superior mesenteric artery and with a catheter in the carotid artery for the measurement of arterial blood pressure. Temperature was measured at five sites: left (Tsl) and right subcutaneous (sides toward and away from the MMW source, respectively), colonic (Tc), tympanic, and tail. The animals were exposed until death to MMW (35 GHz) at a power density that resulted in a whole-body specific absorption rate of 13 W/kg. During irradiation, the Tsl increase was significantly greater than the Tc increase. Heart rate increased throughout irradiation. Mean arterial pressure (MAP) was well maintained until Tsl reached 42°C, at which point MAP declined until death. Mesenteric vascular resistance tended to increase during the early stages of irradiation but began to decrease at Tsl ≤ 41 °C. The declines in both mesenteric vascular resistance and MAP began at Tc < 37.5°C; death occurred at Tc = 40.3 ± .3°C and Tsl = 48.0 ± .4°C. These data indicate that circulatory failure and subsequent death may occur when skin temperature is rapidly elevated, even in the presence of relatively normal Tc.


Comparative Biochemistry and Physiology Part A: Physiology | 1992

Heart rate and blood pressure changes during radiofrequency irradiation and environmental heating

James R. Jauchem; Melvin R. Frei

1. Whole-body exposure of animals to radiofrequency radiation (RFR) can cause an increase in body temperature. 2. Responses to heating, whether due to RFR or to more conventional means, include changes in heart rate and blood pressure. 3. Although cardiovascular responses to various types of heating are similar, differences in the magnitude of changes may result from different thermal gradients within the body. 4. This review compares the effects of RFR and conventional environmental heating on heart rate and blood pressure.


Experimental Biology and Medicine | 1984

Heart Rate Changes Due to 5.6-GHz Radiofrequency Radiation: Relation to Average Power Density

James R. Jauchem; Melvin R. Frei; Ferdinand Heinmets

Abstract Effects of intermittent exposure to 5.6-GHz radiofrequency radiation (RFR) on heart rate, blood pressure, and respiratory rate were examined in anesthetized rats. During exposure to 60 mW/cm2 which resulted in a 1°C change in colonic temperature, heart rate increased; the values returned to control levels after exposure was discontinued. No changes in mean arterial blood pressure or in respiratory rate were observed. Exposure to 30 mW/cm2 caused no significant changes in heart rate, blood pressure, or respiratory rate. The data indicate that heart rate changes during exposure to 5.6-GHz RFR are related to the average power density applied, and thus to the rate of change in temperature, and not simply to the absolute change in temperature.

Collaboration


Dive into the Melvin R. Frei's collaboration.

Top Co-Authors

Avatar

James R. Jauchem

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James H. Merritt

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin L. Meltz

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijayalaxmi

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

G. Andrew Mickley

Baldwin Wallace University

View shared research outputs
Researchain Logo
Decentralizing Knowledge