Melvin R. Hayden
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melvin R. Hayden.
Cardiovascular Diabetology | 2005
Melvin R. Hayden; Suresh C. Tyagi; Lisa Kolb; James R. Sowers; Ramesh Khanna
BackgroundVascular calcification is associated with metabolic syndrome, diabetes, hypertension, atherosclerosis, chronic kidney disease, and end stage renal disease. Each of the above contributes to an accelerated and premature demise primarily due to cardiovascular disease. The above conditions are associated with multiple metabolic toxicities resulting in an increase in reactive oxygen species to the arterial vessel wall, which results in a response to injury wound healing (remodeling). The endothelium seems to be at the very center of these disease processes, acting as the first line of defense against these multiple metabolic toxicities and the first to encounter their damaging effects to the arterial vessel wall.ResultsThe pathobiomolecular mechanisms of vascular calcification are presented in order to provide the clinician – researcher a database of knowledge to assist in the clinical management of these high-risk patients and examine newer therapies. Calciphylaxis is associated with medial arteriolar vascular calcification and results in ischemic subcutaneous necrosis with vulnerable skin ulcerations and high mortality. Recently, this clinical syndrome (once thought to be rare) is presenting with increasing frequency. Consequently, newer therapeutic modalities need to be explored. Intravenous sodium thiosulfate is currently used as an antidote for the treatment of cyanide poisioning and prevention of toxicities of cisplatin cancer therapies. It is used as a food and medicinal preservative and topically used as an antifungal medication.ConclusionA discussion of sodium thiosulfates dual role as a potent antioxidant and chelator of calcium is presented in order to better understand its role as an emerging novel therapy for the clinical syndrome of calciphylaxis and its complications.
Clinical Journal of The American Society of Nephrology | 2007
Preethi Yerram; Georges Saab; Poorna R. Karuparthi; Melvin R. Hayden; Ramesh Khanna
Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis (NSF) is an emerging scleromyxedema-like cutaneous disorder of unknown cause that is seen in patients with renal failure, and the number of reported cases has grown significantly since its first recognition. Recent case reports associated the use of gadolinium (Gd3+)-based contrast agents with the development of NSF. Herein is reported an additional patient who had NSF and had multiple previous exposures to Gd3+-based magnetic resonance imaging studies and had marked improvement in pain and skin changes after a trial of intravenous sodium thiosulfate. Discussed are the possible association of Gd3+-based contrast media with the development of NSF and potential for the use of sodium thiosulfate in the treatment of NSF.
Cardiovascular Diabetology | 2005
Melvin R. Hayden; James R. Sowers; Suresh C. Tyagi
The vascular endothelial basement membrane and extra cellular matrix is a compilation of different macromolecules organized by physical entanglements, opposing ionic charges, chemical covalent bonding, and cross-linking into a biomechanically active polymer. These matrices provide a gel-like form and scaffolding structure with regional tensile strength provided by collagens, elasticity by elastins, adhesiveness by structural glycoproteins, compressibility by proteoglycans – hyaluronans, and communicability by a family of integrins, which exchanges information between cells and between cells and the extracellular matrix of vascular tissues.Each component of the extracellular matrix and specifically the capillary basement membrane possesses unique structural properties and interactions with one another, which determine the separate and combined roles in the multiple diabetic complications or diabetic opathies.Metabolic syndrome, prediabetes, type 2 diabetes mellitus, and their parallel companion (atheroscleropathy) are associated with multiple metabolic toxicities and chronic injurious stimuli. The adaptable quality of a matrix or form genetically preloaded with the necessary information to communicate and respond to an ever-changing environment, which supports the interstitium, capillary and arterial vessel wall is individually examined.
Nutrition Journal | 2004
Melvin R. Hayden; Suresh C. Tyagi
Homocysteine has emerged as a novel independent marker of risk for the development of cardiovascular disease over the past three decades. Additionally, there is a graded mortality risk associated with an elevated fasting plasma total homocysteine (tHcy). Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) are now considered to be a strong coronary heart disease (CHD) risk enhancer and a CHD risk equivalent respectively. Hyperhomocysteinemia (HHcy) in patients with MS and T2DM would be expected to share a similar prevalence to the general population of five to seven percent and of even greater importance is: Declining glomerular filtration and overt diabetic nephropathy is a major determinant of tHcy elevation in MS and T2DM.There are multiple metabolic toxicities resulting in an excess of reactive oxygen species associated with MS, T2DM, and the accelerated atherosclerosis (atheroscleropathy). HHcy is associated with an increased risk of cardiovascular disease, and its individual role and how it interacts with the other multiple toxicities are presented.The water-soluble B vitamins (especially folate and cobalamin-vitamin B12) have been shown to lower HHcy. The absence of the cystathionine beta synthase enzyme in human vascular cells contributes to the importance of a dual role of folic acid in lowering tHcy through remethylation, as well as, its action of being an electron and hydrogen donor to the essential cofactor tetrahydrobiopterin. This folate shuttle facilitates the important recoupling of the uncoupled endothelial nitric oxide synthase enzyme reaction and may restore the synthesis of the omnipotent endothelial nitric oxide to the vasculature.
Cardiovascular Diabetology | 2004
Melvin R. Hayden; Suresh C. Tyagi
BackgroundVascularization is an exciting and complex mechanism involving angiogenesis and arteriogenesis. The metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) are associated with multiple metabolic toxicities, which result in reactive oxygen species (ROS) due to an elevated tension of oxidative-redox stress and an accelerated atherosclerosis termed atheroscleropathy.ResultsThis atheroscleropathy is associated with accelerated angiogenesis within the vulnerable, thin-cap fibro-atheroma, prone to rupture resulting in acute coronary syndromes (ACS). The resulting intimopathy with its neovascularization due to angiogenesis of the adventitial vasa vasorum (Vv) is prone to intraplaque hemorrhage (IPH). These IPH are associated with destabilization of the vulnerable plaques resulting in plaque erosion and plaque rupture resulting in ACS. In atheroscleropathy the adventitial Vv invades the plaque in a malignant-like fashion and concurrently is associated with chronic inflammation, as macrophages are being deposited within the shoulder regions of these vulnerable plaques. These angiogenic Vv provide a custom delivery vascular network for multiple detrimental substrates, which further accelerates the growth of these vulnerable plaques and atheroscleropathy. There exists a vascularization paradox in MS and T2DM, in that, angiogenesis within the plaque is induced and arteriogenesis is impaired.ConclusionThis review will attempt to provide a database of knowledge regarding the vascularization process (angiogenesis and arteriogenesis) and its mechanisms to better understand the increased cardiovascular risk and the increased morbidity and mortality associated with MS and T2DM.
Hypertension | 2010
Xinli Zhou; Lixin Ma; Javad Habibi; Adam Whaley-Connell; Melvin R. Hayden; Roger D. Tilmon; Ashley N. Brown; Jeong-a Kim; Vincent G. DeMarco; James R. Sowers
Insulin resistance is associated with obesity and may be accompanied by left ventricular diastolic dysfunction and myocardial remodeling. Decreased insulin metabolic signaling and increased oxidative stress may promote these maladaptive changes. In this context, the &bgr;-blocker nebivolol has been reported to improve insulin sensitivity, increase endothelial NO synthase activity, and reduce NADPH oxidase–induced superoxide generation. We hypothesized that nebivolol would attenuate diastolic dysfunction and myocardial remodeling by blunting myocardial oxidant stress and promoting insulin metabolic signaling in a rodent model of obesity, insulin resistance, and hypertension. Six-week–old male Zucker obese and age-matched Zucker lean rats were treated with nebivolol (10 mg · kg− · day−1) for 21 days, and myocardial function was assessed by cine MRI. Compared with untreated Zucker lean rats, untreated Zucker obese rats exhibited prolonged diastolic relaxation time (27.7±2.5 versus 40.9±2.0 ms; P<0.05) and reduced initial diastolic filling rate (6.2±0.5 versus 2.8±0.6 &mgr;L/ms; P<0.05) in conjunction with increased homeostatic model assessment of insulin resistance (7±2 versus 95±21; P<0.05), interstitial and pericapillary fibrosis, abnormal cardiomyocyte histoarchitecture, 3-nitrotyrosine, and NADPH oxidase–dependent superoxide. Nebivolol improved diastolic relaxation (32.8±0.7 ms; P<0.05 versus untreated Zucker obese), reduced fibrosis, and remodeling in Zucker obese rats, in concert with reductions in nitrotyrosine, NADPH oxidase–dependent superoxide, and improvements in the insulin metabolic signaling, endothelial NO synthase activation, and weight gain (381±7 versus 338±14 g; P<0.05). Results support the hypothesis that nebivolol reduces myocardial structural maladaptive changes and improves diastolic relaxation in concert with improvements in insulin sensitivity and endothelial NO synthase activation, concomitantly with reductions in oxidative stress.
American Journal of Physiology-endocrinology and Metabolism | 2008
Guido Lastra; Adam Whaley-Connell; Camila Manrique; Javad Habibi; Alex Gutweiler; Lama Appesh; Melvin R. Hayden; Yongzhong Wei; Carlos M. Ferrario; James R. Sowers
Renin-angiotensin-aldosterone system (RAAS) activation mediates increases in reactive oxygen species (ROS) and impaired insulin signaling. The transgenic Ren2 rat manifests increased tissue renin-angiotensin system activity, elevated serum aldosterone, hypertension, and insulin resistance. To explore the role of aldosterone in the pathogenesis of insulin resistance, we investigated the impact of in vivo treatment with a mineralocorticoid receptor (MR) antagonist on insulin sensitivity in Ren2 and aged-matched Sprague-Dawley (SD) control rats. Both groups (age 6-8 wk) were implanted with subcutaneous time-release pellets containing spironolactone (0.24 mg/day) or placebo over 21 days. Systolic blood pressure (SBP) and intraperitoneal glucose tolerance test were determined. Soleus muscle insulin receptor substrate-1 (IRS-1), tyrosine phosphorylated IRS-1, protein kinase B (Akt) phosphorylation, GLUT4 levels, and insulin-stimulated 2-deoxyglucose uptake were evaluated in relation to NADPH subunit expression/oxidase activity and ROS production (chemiluminescence and 4-hydroxy-2-nonenal immunostaining). Along with increased soleus muscle NADPH oxidase activity and ROS, there was systemic insulin resistance and reduced muscle IRS-1 tyrosine phosphorylation, Akt phosphorylation/activation, and GLUT4 expression in the Ren2 group (each P < 0.05). Despite not decreasing blood pressure, low-dose spironolactone treatment improved soleus muscle insulin signaling parameters and systemic insulin sensitivity in concert with reductions in NADPH oxidase subunit expression/activity and ROS production (each P < 0.05). Our findings suggest that aldosterone contributes to insulin resistance in the transgenic Ren2, in part, by increasing NADPH oxidase activity in skeletal muscle tissue.
Cardiovascular Diabetology | 2002
Melvin R. Hayden; Suresh C. Tyagi
Metabolic syndrome, insulin resistance, prediabetes, and overt type 2 diabetes mellitus are associated with an accelerated atherosclerosis (atheroscleropathy). This quartet is also associated with multiple metabolic toxicities resulting in the production of reactive oxygen species. The redox stress associated with these reactive oxygen species contribute to the development, progression, and the final fate of the arterial vessel wall in prediabetic and diabetic atheroscleropathy. The prevention of morbidity and mortality of these intersecting metabolic diseases can be approached through comprehensive global risk reduction.
Hypertension | 2008
Adam Whaley-Connell; Javad Habibi; Ravi Nistala; Shawna A. Cooper; Poorna R. Karuparthi; Melvin R. Hayden; Nathan Rehmer; Vincent G. DeMarco; Bradley T. Andresen; Yongzhong Wei; Carlos M. Ferrario; James R. Sowers
Activation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase by angiotensin II is integral to the formation of oxidative stress in the vasculature and the kidney. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibition is associated with reductions of oxidative stress in the vasculature and kidney and associated decreases in albuminuria. Effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibition on oxidative stress in the kidney and filtration barrier integrity are poorly understood. To investigate, we used transgenic TG(mRen2)27 (Ren2) rats, which harbor the mouse renin transgene and renin-angiotensin system activation, and an immortalized murine podocyte cell line. We treated young, male Ren2 and Sprague-Dawley rats with rosuvastatin (20 mg/kg IP) or placebo for 21 days. Compared with controls, we observed increases in systolic blood pressure, albuminuria, renal NADPH oxidase activity, and 3-nitrotryosine staining, with reductions in the rosuvastatin-treated Ren2. Structural changes on light and transmission electron microscopy, consistent with periarteriolar fibrosis and podocyte foot-process effacement, were attenuated with statin treatment. Nephrin expression was diminished in the Ren2 kidney and trended to normalize with statin treatment. Angiotensin II-dependent increases in podocyte NADPH oxidase activity and subunit expression (NOX2, NOX4, Rac, and p22phox) and reactive oxygen species generation were decreased after in vitro statin treatment. These data support a role for increased NADPH oxidase activity and subunit expression with resultant reactive oxygen species formation in the kidney and podocyte. Furthermore, statin attenuation of NADPH oxidase activation and reactive oxygen species formation in the kidney/podocyte seems to play roles in the abrogation of oxidative stress-induced filtration barrier injury and consequent albuminuria.
CardioRenal Medicine | 2011
James R. Sowers; Adam Whaley-Connell; Melvin R. Hayden
The presence of a group of interactive maladaptive factors including hypertension, insulin resistance, metabolic dyslipidemia, obesity, microalbuminuria, and/or reduced renal function constitute the cardiorenal metabolic syndrome (CRS). Overweight, obesity, and chronic kidney disease (CKD) have grown to pandemic proportions in industrialized countries during the past decade. The fact that these interactive factors promote heart and renal disease has been documented in large population-based studies. Obesity seems to be the driving force behind the development of heart disease and CKD and therefore the CRS. The relationship between overweight/obesity and kidney disease begins in early childhood and appears to be related to overconsumption of high-fructose corn syrup and insufficient physical activity. Today, 13 million children are obese, and over 70% of these children are likely to become obese adults. Indeed, approximately 30% of male and 34% of female adults in the United States are obese. This lifestyle-related epidemic will be a major societal medical and economic problem that will accentuate the current epidemic of CKD in the United States and other industrialized and emerging industrialized countries. In this article, we will review the potential mechanisms by which obesity and other metabolic abnormalities interact to promote heart and progressive kidney disease.