Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melvyn Sim is active.

Publication


Featured researches published by Melvyn Sim.


Operations Research | 2004

The Price of Robustness

Dimitris Bertsimas; Melvyn Sim

A robust approach to solving linear optimization problems with uncertain data was proposed in the early 1970s and has recently been extensively studied and extended. Under this approach, we are willing to accept a suboptimal solution for the nominal values of the data in order to ensure that the solution remains feasible and near optimal when the data changes. A concern with such an approach is that it might be too conservative. In this paper, we propose an approach that attempts to make this trade-off more attractive; that is, we investigate ways to decrease what we call the price of robustness. In particular, we flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations. An attractive aspect of our method is that the new robust formulation is also a linear optimization problem. Thus we naturally extend our methods to discrete optimization problems in a tractable way. We report numerical results for a portfolio optimization problem, a knapsack problem, and a problem from the Net Lib library.


Mathematical Programming | 2003

Robust discrete optimization and network flows

Dimitris Bertsimas; Melvyn Sim

Abstract.We propose an approach to address data uncertainty for discrete optimization and network flow problems that allows controlling the degree of conservatism of the solution, and is computationally tractable both practically and theoretically. In particular, when both the cost coefficients and the data in the constraints of an integer programming problem are subject to uncertainty, we propose a robust integer programming problem of moderately larger size that allows controlling the degree of conservatism of the solution in terms of probabilistic bounds on constraint violation. When only the cost coefficients are subject to uncertainty and the problem is a 0−1 discrete optimization problem on n variables, then we solve the robust counterpart by solving at most n+1 instances of the original problem. Thus, the robust counterpart of a polynomially solvable 0−1 discrete optimization problem remains polynomially solvable. In particular, robust matching, spanning tree, shortest path, matroid intersection, etc. are polynomially solvable. We also show that the robust counterpart of an NP-hard α-approximable 0−1 discrete optimization problem, remains α-approximable. Finally, we propose an algorithm for robust network flows that solves the robust counterpart by solving a polynomial number of nominal minimum cost flow problems in a modified network.


Operations Research | 2007

Risk Aversion in Inventory Management

Xin Chen; Melvyn Sim; David Simchi-Levi; Peng Sun

Traditional inventory models focus on risk-neutral decision makers, i.e., characterizing replenishment strategies that maximize expected total profit, or equivalently, minimize expected total cost over a planning horizon. In this paper, we propose a framework for incorporating risk aversion in multiperiod inventory models as well as multiperiod models that coordinate inventory and pricing strategies. We show that the structure of the optimal policy for a decision maker with exponential utility functions is almost identical to the structure of the optimal risk-neutral inventory (and pricing) policies. These structural results are extended to models in which the decision maker has access to a (partially) complete financial market and can hedge its operational risk through trading financial securities. Computational results demonstrate that the optimal policy is relatively insensitive to small changes in the decision-makers level of risk aversion.


Mathematical Programming | 2006

Tractable Approximations to Robust Conic Optimization Problems

Dimitris Bertsimas; Melvyn Sim

In earlier proposals, the robust counterpart of conic optimization problems exhibits a lateral increase in complexity, i.e., robust linear programming problems (LPs) become second order cone problems (SOCPs), robust SOCPs become semidefinite programming problems (SDPs), and robust SDPs become NP-hard. We propose a relaxed robust counterpart for general conic optimization problems that (a) preserves the computational tractability of the nominal problem; specifically the robust conic optimization problem retains its original structure, i.e., robust LPs remain LPs, robust SOCPs remain SOCPs and robust SDPs remain SDPs, and (b) allows us to provide a guarantee on the probability that the robust solution is feasible when the uncertain coefficients obey independent and identically distributed normal distributions.


Operations Research | 2007

A Robust Optimization Perspective on Stochastic Programming

Xin Chen; Melvyn Sim; Peng Sun

In this paper, we introduce an approach for constructing uncertainty sets for robust optimization using new deviation measures for random variables termed the forward and backward deviations. These deviation measures capture distributional asymmetry and lead to better approximations of chance constraints. Using a linear decision rule, we also propose a tractable approximation approach for solving a class of multistage chance-constrained stochastic linear optimization problems. An attractive feature of the framework is that we convert the original model into a second-order cone program, which is computationally tractable both in theory and in practice. We demonstrate the framework through an application of a project management problem with uncertain activity completion time.


European Journal of Operational Research | 2003

Vehicle routing problem with time windows and a limited number of vehicles

Hoong Chuin Lau; Melvyn Sim; Kwong Meng Teo

Abstract This paper introduces a variant of the vehicle routing problem with time windows where a limited number of vehicles is given (m-VRPTW). Under this scenario, a feasible solution is one that may contain either unserved customers and/or relaxed time windows. We provide a computable upper bound to the problem. To solve the problem, we propose a tabu search approach characterized by a holding list and a mechanism to force dense packing within a route. We also allow time windows to be relaxed by introducing the notion of penalty for lateness. In our approach, customer jobs are inserted based on a hierarchical objective function that captures multiple objectives. Computational results on benchmark problems show that our approach yields solutions that are competitive to best-published results on VRPTW. On m-VRPTW instances, experiments show that our approach produces solutions that are very close to computed upper bounds. Moreover, as the number of vehicles decreases, the routes become more densely packed monotically. This shows that our approach is good from both the optimality as well as stability point of view.


Operations Research | 2008

A Linear Decision-Based Approximation Approach to Stochastic Programming

Xin Chen; Melvyn Sim; Peng Sun; Jiawei Zhang

Stochastic optimization, especially multistage models, is well known to be computationally excruciating. Moreover, such models require exact specifications of the probability distributions of the underlying uncertainties, which are often unavailable. In this paper, we propose tractable methods of addressing a general class of multistage stochastic optimization problems, which assume only limited information of the distributions of the underlying uncertainties, such as known mean, support, and covariance. One basic idea of our methods is to approximate the recourse decisions via decision rules. We first examine linear decision rules in detail and show that even for problems with complete recourse, linear decision rules can be inadequate and even lead to infeasible instances. Hence, we propose several new decision rules that improve upon linear decision rules, while keeping the approximate models computationally tractable. Specifically, our approximate models are in the forms of the so-called second-order cone (SOC) programs, which could be solved efficiently both in theory and in practice. We also present computational evidence indicating that our approach is a viable alternative, and possibly advantageous, to existing stochastic optimization solution techniques in solving a two-stage stochastic optimization problem with complete recourse.


Operations Research | 2009

Constructing Risk Measures from Uncertainty Sets

Karthik Natarajan; Dessislava A. Pachamanova; Melvyn Sim

We illustrate the correspondence between uncertainty sets in robust optimization and some popular risk measures in finance and show how robust optimization can be used to generalize the concepts of these risk measures. We also show that by using properly defined uncertainty sets in robust optimization models, one can construct coherent risk measures and address the issue of the computational tractability of the resulting formulations. Our results have implications for efficient portfolio optimization under different measures of risk.


Operations Research | 2010

Robust Approximation to Multiperiod Inventory Management

Chuen-Teck See; Melvyn Sim

We propose a robust optimization approach to address a multiperiod inventory control problem under ambiguous demands, that is, only limited information of the demand distributions such as mean, support, and some measures of deviations. Our framework extends to correlated demands and is developed around a factor-based model, which has the ability to incorporate business factors as well as time-series forecast effects of trend, seasonality, and cyclic variations. We can obtain the parameters of the replenishment policies by solving a tractable deterministic optimization problem in the form of a second-order cone optimization problem (SOCP), with solution time; unlike dynamic programming approaches, it is polynomial and independent on parameters such as replenishment lead time, demand variability, and correlations. The proposed truncated linear replenishment policy (TLRP), which is piecewise linear with respect to demand history, improves upon static and linear policies, and achieves objective values that are reasonably close to optimal.


Mathematical Finance | 2010

Tractable Robust Expected Utility and Risk Models for Portfolio Optimization

Karthik Natarajan; Melvyn Sim; Joline Uichanco

Expected utility models in portfolio optimization are based on the assumption of complete knowledge of the distribution of random returns. In this paper, we relax this assumption to the knowledge of only the mean, covariance, and support information. No additional restrictions on the type of distribution such as normality is made. The investor’s utility is modeled as a piecewise-linear concave function. We derive exact and approximate optimal trading strategies for a robust (maximin) expected utility model, where the investor maximizes his worst-case expected utility over a set of ambiguous distributions. The optimal portfolios are identified using a tractable conic programming approach. Extensions of the model to capture asymmetry using partitioned statistics information and box-type uncertainty in the mean and covariance matrix are provided. Using the optimized certainty equivalent framework, we provide connections of our results with robust or ambiguous convex risk measures, in which the investor minimizes his worst-case risk under distributional ambiguity. New closed-form results for the worst-case optimized certainty equivalent risk measures and optimal portfolios are provided for two- and three-piece utility functions. For more complicated utility functions, computational experiments indicate that such robust approaches can provide good trading strategies in financial markets.

Collaboration


Dive into the Melvyn Sim's collaboration.

Top Co-Authors

Avatar

Chen Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Chong Jin Ong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Dimitris Bertsimas

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karthik Natarajan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jin Qi

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheekiat Low

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge