Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Menachem Elimelech is active.

Publication


Featured researches published by Menachem Elimelech.


Nature | 2008

Science and technology for water purification in the coming decades

Mark A. Shannon; Paul W. Bohn; Menachem Elimelech; John G. Georgiadis; Benito J. Mariñas; Anne M. Mayes

One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.


Science | 2011

The Future of Seawater Desalination: Energy, Technology, and the Environment

Menachem Elimelech; William A. Phillip

In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.


Journal of Membrane Science | 1997

Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes

Seungkwan Hong; Menachem Elimelech

The role of chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes is systematically investigated. Results of fouling experiments with three humic acids demonstrate that membrane fouling increases with increasing electrolyte (NaC1) concentration, decreasing solution pH, and addition of divalent cations (Ca2+). At fixed solution ionic strength, the presence of calcium ions, at concentrations typical of those found in natural waters, has a marked effect on membrane fouling. Divalent cations interact specifically with humic carboxyl functional groups and, thus, substantially reduce humic charge and the electrostatic repulsion between humic macromolecules. Reduced NOM interchain repulsion results in increased NOM deposition on the membrane surface and formation of a densely packed fouling layer. In addition to the aforementioned chemical effects, results show that NOM fouling rate increases substantially with increasing initial permeation rate. It is demonstrated that the rate of fouling is controlled by an interplay between permeation drag and electrostatic double layer repulsion; that is, NOM fouling of NF membranes involves interrelationship (coupling) between physical and chemical interactions. The addition of a strong chelating agent (EDTA) to feed water reduces NOM fouling significantly by removing free and NOM-complexed calcium ions. EDTA treatment of NOM-fouled membranes also improves the cleaning efficiency dramatically by disrupting the fouling layer structure through a ligand exchange reaction between EDTA and NOM-calcium complexes.


Colloids and Surfaces A: Physicochemical and Engineering Aspects | 1996

Colloid mobilization and transport in groundwater

Joseph N. Ryan; Menachem Elimelech

Abstract Recent field and laboratory experiments have identified colloid-facilitated transport of contaminants as an important mechanism of contaminant migration through groundwater. For colloid-facilitated transport to be important, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids; and (3) colloids must be transported through the groundwater. Significant progress in the understanding of colloid generation (by mobilization of existing colloids) and transport (limited by deposition) in model colloid and collector systems has been made in the past few decades. This knowledge of the model systems, however, is inadequate for prediction of colloid behavior in natural groundwater systems. An understanding of colloid behavior in natural systems is essential for predicting the potential for colloid-facilitated transport in a given groundwater. This review presents theories describing colloid mobilization, deposition, and transport, laboratory experiments in model systems designed to test these theories, and applications of these theories to colloid mobilization and transport experiments in natural groundwater systems. Emphasis is placed on mobilization of existing colloids by chemical and physical perturbations, the kinetics and dynamics of colloid deposition (filtration) and the “blocking” effect, and the effect of surface chemical heterogeneities on colloid deposition and transport.


Journal of Membrane Science | 2001

Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes

Eric M. Vrijenhoek; Seungkwan Hong; Menachem Elimelech

Abstract Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.


Journal of Membrane Science | 1996

Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes

Amy E. Childress; Menachem Elimelech

Abstract A streaming potential analyzer has been used to investigate the effect of solution chemistry on the surface charge of four commercial reverse osmosis and nanofiltration membranes. Zeta potentials of these membranes were analyzed for aqueous solutions of various chemical compositions over a pH range of 2 to 9. In the presence of an indifferent electrolyte (NaCl), the isoelectric points of these membranes range from 3.0 to 5.2. The curves of zeta potential versus solution pH for all membranes display a shape characteristic of amphoteric surfaces with acidic and basic functional groups. Results with salts containing divalent ions (CaCl2, Na2SO4, and MgSO4) indicate that divalent cations more readily adsorb to the membrane surface than divalent anions, especially in the higher pH range. Three sources of humic acid, Suwannee River humic acid, peat humic acid, and Aldrich humic acid, were used to investigate the effect of dissolved natural organic matter on membrane surface charge. Other solution chemistries involved in this investigation include an anionic surfactant (sodium dodecyl sulfate) and a cationic surfactant (dodecyltrimethylammonium bromide). Results show that humic substances and surfactants readily adsorb to the membrane surface and markedly influence the membrane surface charge.


Environmental Science & Technology | 2010

Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions

Adamo Riccardo Petosa; Deb P. Jaisi; Ivan R. Quevedo; Menachem Elimelech; Nathalie Tufenkji

The ever-increasing use of engineered nanomaterials will lead to heightened levels of these materials in the environment. The present review aims to provide a comprehensive overview of current knowledge regarding nanoparticle transport and aggregation in aquatic environments. Nanoparticle aggregation and deposition behavior will dictate particle transport potential and thus the environmental fate and potential ecotoxicological impacts of these materials. In this review, colloidal forces governing nanoparticle deposition and aggregation are outlined. Essential equations used to assess particle-particle and particle-surface interactions, along with Hamaker constants for specific nanoparticles and the attributes exclusive to nanoscale particle interactions, are described. Theoretical and experimental approaches for evaluating nanoparticle aggregation and deposition are presented, and the major findings of laboratory studies examining these processes are also summarized. Finally, we describe some of the challenges encountered when attempting to quantify the transport of nanoparticles in aquatic environments.


Langmuir | 2008

Antibacterial effects of carbon nanotubes: size does matter!

Seoktae Kang; Moshe Herzberg; Debora F. Rodrigues; Menachem Elimelech

We provide the first evidence that the size (diameter) of carbon nanotubes (CNTs) is a key factor governing their antibacterial effects and that the likely main CNT-cytotoxicity mechanism is cell membrane damage by direct contact with CNTs. Experiments with well-characterized single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) demonstrate that SWNTs are much more toxic to bacteria than MWNTs. Gene expression data show that in the presence of both MWNTs and SWNTs, Escherichia coli expresses high levels of stress-related gene products, with the quantity and magnitude of expression being much higher in the presence of SWNTs.


Environmental Science & Technology | 2010

High Performance Thin-Film Composite Forward Osmosis Membrane

Ngai Yin Yip; Alberto Tiraferri; William A. Phillip; Jessica D. Schiffman; Menachem Elimelech

Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 mum) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m(2-)h(-1), while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution.


Nature | 2012

Membrane-based processes for sustainable power generation using water

Bruce E. Logan; Menachem Elimelech

Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

Collaboration


Dive into the Menachem Elimelech's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph N. Ryan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinglin Lu

Harbin Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony P. Straub

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge