Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meng-Jun Hu is active.

Publication


Featured researches published by Meng-Jun Hu.


Amino Acids | 2016

Identification of hydrophobic interactions between relaxin-3 and its receptor RXFP3: implication for a conformational change in the B-chain C-terminus during receptor binding

Meng-Jun Hu; Xiao-Xia Shao; Jia-Hui Wang; Dian Wei; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Relaxin-3 is an insulin/relaxin superfamily neuropeptide implicated in the regulation of food intake and stress response via activation of the G protein-coupled receptor RXFP3. Their electrostatic interactions have been recently identified, and involves three positively charged B-chain residues (B12Arg, B16Arg, and B26Arg) of relaxin-3 and two negatively charged residues (Glu141 and Asp145) in a highly conserved ExxxD motif at the extracellular end of the second transmembrane domain of RXFP3. To investigate their hydrophobic interactions, in the present work we deleted the highly conserved B-chain C-terminal B27Trp residue of relaxin-3, and mutated four highly conserved aromatic residues (Phe137, Trp138, Phe146, and Trp148) around the ExxxD motif of RXFP3. The resultant [∆B27W]relaxin-3 exhibited approximately tenfold lower binding potency and ~1000-fold lower activation potency towards wild-type RXFP3, confirming its importance for relaxin-3 function. Although the RXFP3 mutants could be normally trafficked to cell membrane, they had quite different activities. [F137A]RXFP3 could normally distinguish wild-type relaxin-3 and [∆B27W]relaxin-3 in binding and activation assays, whereas [W138A]RXFP3 lost most of this capability, suggesting that the Trp138 residue of RXFP3 forms hydrophobic interactions with the B27Trp residue of relaxin-3. The hydrophobic Trp138 residue and the formerly identified negatively charged Glu141 and Asp145 residues in the highly conserved WxxExxxD motif may thus form a functional surface that is important for interaction with relaxin-3. We hypothesize that the relaxin-3 B-chain C-terminus changes from the original folding-back conformation to an extended conformation during binding with RXFP3, to allow its B27Trp and B26Arg residues to interact with the Trp138 and Glu141 residues of RXFP3, respectively.


Scientific Reports | 2016

Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4.

Meng-Jun Hu; Xiao-Xia Shao; Jia-Hui Wang; Dian Wei; Yu-Qi Guo; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

The relaxin family peptides play a variety of biological functions by activating four G protein-coupled receptors, RXFP1–4. Among them, insulin-like peptide 5 (INSL5) and relaxin-3 share the highest sequence homology, but they have distinct receptor preference: INSL5 can activate RXFP4 only, while relaxin-3 can activate RXFP3, RXFP4, and RXFP1. Previous studies suggest that the A-chain is responsible for their different selectivity for RXFP1. However, the mechanism by which INSL5 distinguishes the homologous RXFP4 and RXFP3 remains unknown. In the present work, we chemically evolved INSL5 in vitro to a strong agonist of both RXFP4 and RXFP3 through replacement of its five B-chain residues with the corresponding residues of relaxin-3. We identified four determinants (B2Glu, B9Leu, B17Tyr, and a rigid B-chain C-terminus) on INSL5 that are responsible for its inactivity at RXFP3. In reverse experiments, we grafted these determinants onto a chimeric R3/I5 peptide, which contains the B-chain of relaxin-3 and the A-chain of INSL5, and retains full activation potency at RXFP3 and RXFP4. All resultant R3/I5 mutants retained high activation potency towards RXFP4, but most displayed significantly decreased or even abolished activation potency towards RXFP3, confirming the role of these four INSL5 determinants in distinguishing RXFP4 from RXFP3.


Archives of Biochemistry and Biophysics | 2017

Interaction mechanism of insulin-like peptide 5 with relaxin family peptide receptor 4

Meng-Jun Hu; Dian Wei; Xiao-Xia Shao; Jia-Hui Wang; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Insulin-like peptide 5 (INSL5) is a gut peptide hormone belonging to the insulin/relaxin superfamily. It is implicated in the regulation of food intake and glucose homeostasis by activating relaxin family peptide receptor 4 (RXFP4). Previous studies have suggested that the B-chain is important for INSL5 activity against RXFP4. However, functionalities of the B-chain residues have not yet been systematically studied. In the present work, we conducted alanine-scanning mutagenesis of the B-chain residues of human INSL5 to obtain an overview of their contributions. Binding and activation assays of these INSL5 mutants with human RXFP4 identified two essential exposed B-chain C-terminal residues (B23Arg and B24Trp) and one important exposed central B-chain residue (B16Ile). These three determinant residues together with the C-terminal carboxylate moiety probably constitute a central receptor-binding patch that forms critical hydrophobic and electrostatic interactions with RXFP4 during INSL5 binding. Some other exposed residues, including B10Glu, B12Ile, B13Arg, B17Tyr, B21Ser, and B22Ser, made minor contributions to INSL5 function. These auxiliary residues are scattered around the edge of the central receptor-binding patch, and thus form a peripheral receptor-binding patch on the surface of INSL5. Our present work provides new insights into the interaction mechanism of INSL5 with its receptor RXFP4.


Scientific Reports | 2017

Development of a selective agonist for relaxin family peptide receptor 3

Dian Wei; Meng-Jun Hu; Xiao-Xia Shao; Jia-Hui Wang; Wei-Han Nie; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely RXFP1–4. Among these receptors, RXFP3 lacks a specific natural or synthetic agonist at present. A previously designed chimeric R3/I5 peptide, consisting of the B-chain of relaxin-3 and the A-chain of INSL5, displays equal activity towards the homologous RXFP3 and RXFP4. To increase its selectivity towards RXFP3, in the present study we conducted extensive mutagenesis around the B-chain C-terminal region of R3/I5. Decreasing or increasing the peptide length around the B23–B25 position dramatically lowered the activation potency of R3/I5 towards both RXFP3 and RXFP4. Substitution of B23Gly with Ala or Ser converted R3/I5 from an efficient agonist to a strong antagonist for RXFP3, but the mutants retained considerable activation potency towards RXFP4. Substitution of B24Gly increased the selectivity of R3/I5 towards RXFP3 over the homologous RXFP4. The best mutant, [G(B24)S]R3/I5, displayed 20-fold higher activation potency towards RXFP3 than towards RXFP4, meanwhile retained full activation potency at RXFP3. Thus, [G(B24)S]R3/I5 is the best RXFP3-selective agonist known to date. It is a valuable tool for investigating the physiological functions of RXFP3, and also a suitable template for developing RXFP3-specific agonists in future.


Archives of Biochemistry and Biophysics | 2016

A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3

Yu Liu; Lei Zhang; Xiao-Xia Shao; Meng-Jun Hu; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Relaxin-3 is an insulin/relaxin superfamily neuropeptide involved in the regulation of food intake and stress response via activation of its cognate receptor RXFP3, an A-class G protein-coupled receptor (GPCR). In recent studies, a highly conserved ExxxD motif essential for binding of relaxin-3 has been identified at extracellular end of the second transmembrane domain (TMD2) of RXFP3. For most of the A-class GPCRs, a highly conserved negatively charged Asp residue (Asp(2.50) using Ballesteros-Weinstein numbering and Asp128 in human RXFP3) is present at the middle of TMD2. To elucidate function of the conserved transmembrane Asp128, in the present work we replaced it with other residues and the resultant RXFP3 mutants all retained quite high ligand-binding potency, but their activation and agonist-induced internalization were abolished or drastically decreased. Thus, the negatively charged transmembrane Asp128 controlled transduction of agonist-binding information from the extracellular region to the intracellular region through maintaining RXFP3 in a metastable state for efficient conformational change induced by binding of an agonist.


Archives of Biochemistry and Biophysics | 2018

Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands

Jia-Hui Wang; Meng-Jun Hu; Xiao-Xia Shao; Dian Wei; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Relaxin family peptide receptor 3 (RXFP3) is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. As an A-class G protein-coupled receptor, RXFP3 is an integral plasma membrane protein with seven transmembrane domains, yet influence of the membrane lipids on its function remains unknown. In the present study, we disclosed that cholesterol, an essential membrane lipid for mammalian cells, modulated the binding properties of human RXFP3 with its ligands. We first demonstrated that depletion of cholesterol from host human embryonic kidney (HEK) 293T cells by methyl-β-cyclodextrin altered ligand-binding properties of the overexpressed human RXFP3, such as increasing its binding potency with some antagonists and decreasing its binding affinity with a NanoLuc-conjugated R3/I5 tracer. Thereafter, we demonstrated that two B-chain residues, B5Tyr and B12Arg, were primarily responsible for the increased binding potency of these antagonists with human RXFP3 under the cholesterol depletion condition. Our results suggest that cell membrane cholesterol interacts with human RXFP3 and modulates its ligand-binding properties, providing new insights into the influence of membrane lipids on RXFP3 function.


Biochimie | 2018

Exploring receptor selectivity of the chimeric relaxin family peptide R3/I5 by incorporating unnatural amino acids

Jia-Hui Wang; Meng-Jun Hu; Lei Zhang; Xiao-Xia Shao; Cai-Hong Lv; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely RXFP1-4. Our recent study demonstrated that selectivity of the chimeric relaxin family peptide R3/I5 towards the homologous RXFP3 and RXFP4 can be modulated by replacement of the highly conserved nonchiral B23Gly or B24Gly with some natural l-amino acids. To investigate the mechanism of this modulating effect, in the present study we incorporated unnatural amino acids into the B23 or B24 position of a semi-synthetic R3/I5 that was prepared by a novel sortase-catalysed ligation approach using synthetic relaxin-3 B-chain and recombinant INSL5 A-chain. R3/I5 was a weak agonist for RXFP3 after B23Gly was replaced by D-Ala or D-Ser, but a strong antagonist for this receptor after B23Gly was replaced by corresponding l-amino acids. However, these replacements always resulted in a weak agonist for RXFP4. Thus, configuration of the B23 residue of R3/I5 affected activation of RXFP3 but not RXFP4. For the B24 residue, both size and configuration affected receptor selectivity of R3/I5. l-amino acids with an appropriate size, such as L-Ser and L-Abu, had the greatest effect on increasing the selectivity of R3/I5 towards RXFP3 over the homologous RXFP4. Our present results provided new insights into receptor selectivity of R3/I5, and would facilitate design of novel agonists or antagonists for RXFP3 and RXFP4 in future studies.


Amino Acids | 2018

Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation

Meng-Jun Hu; Xiao-Xia Shao; Hao-Zheng Li; Wei-Han Nie; Jia-Hui Wang; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Relaxin family peptides perform a variety of biological functions by binding and activating relaxin family peptide receptor 1–4 (RXFP1–4), four A-class G protein-coupled receptors. In the present work, we developed a novel ligand binding assay for RXFP3 and RXFP4 based on NanoLuc complementation technology (NanoBiT). A synthetic ligation version of the low-affinity small complementation tag (SmBiT) was efficiently ligated to the A-chain N terminus of recombinant chimeric agonist R3/I5 using recombinant circular sortase A. After the ligation product R3/I5-SmBiT was mixed with human RXFP3 or RXFP4 genetically fused with a secretory large NanoLuc fragment (sLgBiT) at the N terminus, NanoLuc complementation was induced by high-affinity ligand–receptor binding. Binding kinetics and affinities of R3/I5-SmBiT with sLgBiT-fused RXFP3 and RXFP4 were conveniently measured according to the complementation-induced bioluminescence. Using R3/I5-SmBiT and the sLgBiT-fused receptor as a complementation pair, binding potencies of various ligands with RXFP3 and RXFP4 were quantitatively measured without the cumbersome washing step. The novel NanoBiT-based ligand binding assay is convenient for use and suitable for automation, thus will facilitate interaction studies of RXFP3 and RXFP4 with ligands in future. This assay can also be applied to some other plasma membrane receptors for pharmacological characterization of ligands in future studies.


Amino Acids | 2017

A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands

Jia-Hui Wang; Xiao-Xia Shao; Meng-Jun Hu; Dian Wei; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo


Amino Acids | 2017

Rapid preparation of bioluminescent tracers for relaxin family peptides using sortase-catalysed ligation

Jia-Hui Wang; Xiao-Xia Shao; Meng-Jun Hu; Dian Wei; Wei-Han Nie; Ya-Li Liu; Zeng-Guang Xu; Zhan-Yun Guo

Collaboration


Dive into the Meng-Jun Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge