Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meng Kian Tee is active.

Publication


Featured researches published by Meng Kian Tee.


Molecular and Cellular Endocrinology | 2011

Consequences of POR mutations and polymorphisms

Walter L. Miller; Vishal Agrawal; Duanpen Sandee; Meng Kian Tee; Ningwu Huang; Ji Ha Choi; Kari M. Morrissey; Kathleen M. Giacomini

P450 oxidoreductase (POR) transports electrons from NADPH to all microsomal cytochrome P450 enzymes, including steroidogenic P450c17, P450c21 and P450aro. Severe POR mutations A287P (in Europeans) and R457H (in Japanese) cause the Antley-Bixler skeletal malformation syndrome (ABS) plus impaired steroidogenesis (causing genital anomalies), but the basis of ABS is unclear. We have characterized the activities of ∼40 POR variants, showing that assays based on P450c17 activities, but not cytochrome c assays, correlate with the clinical phenotype. The human POR gene is highly polymorphic: the A503V sequence variant, which decreases P450c17 activities to ∼60%, is found on ∼28% of human alleles. A promoter polymorphism (∼8% of Asians and ∼13% of Caucasians) at -152 reduces transcriptional activity by half. Screening of 35 POR variants showed that most mutants lacking activity with P450c17 or cytochrome c also lacked activity to support CYP1A2 and CYP2C19 metabolism of EOMCC (a fluorogenic non-drug substrate), although there were some remarkable differences: Q153R causes ABS and has ∼30% of wild-type activity with P450c17 but had 144% of WT activity with CYP1A2 and 284% with CYP2C19. The effects of POR variants on CYP3A4, which metabolizes nearly 50% of clinically used drugs, was examined with multiple, clinically relevant drug substrates, showing that A287P and R457H dramatically reduce drug metabolism, and that A503V variably impairs drug metabolism. The degree of activity can vary with the drug substrate assayed, as the drugs can influence the conformation of the P450. POR is probably an important contributor to genetic variation in both steroidogenesis and drug metabolism.


The Journal of Clinical Endocrinology and Metabolism | 2011

Partial Defect in the Cholesterol Side-Chain Cleavage Enzyme P450scc (CYP11A1) Resembling Nonclassic Congenital Lipoid Adrenal Hyperplasia

Taninee Sahakitrungruang; Meng Kian Tee; Piers R. Blackett; Walter L. Miller

CONTEXT The cholesterol side-chain cleavage enzyme (P450scc), encoded by the CYP11A1 gene, converts cholesterol to pregnenolone to initiate steroidogenesis. Genetic defects in P450scc cause a rare autosomal recessive disorder that is clinically indistinguishable from congenital lipoid adrenal hyperplasia (lipoid CAH). Nonclassic lipoid CAH is a recently recognized disorder caused by mutations in the steroidogenic acute regulatory protein (StAR) that retain partial function. OBJECTIVE We describe two siblings with hormonal findings suggesting nonclassic lipoid CAH, who had a P450scc mutation that retains partial function. PATIENTS AND METHODS A 46,XY male presented with underdeveloped genitalia and partial adrenal insufficiency; his 46,XX sister presented with adrenal insufficiency. Hormonal studies suggested nonclassic lipoid CAH. Sequencing of the StAR gene was normal, but compound heterozygous mutations were found in the CYP11A1 gene. Mutations were recreated in the F2 plasmid expressing a fusion protein of the cholesterol side-chain cleavage system. P450scc activity was measured as Vmax/Km for pregnenolone production in transfected COS-1 cells. RESULTS The patients were compound heterozygous for the previously described frameshift mutation 835delA and the novel missense mutation A269V. When expressed in the P450scc moiety of F2, the A269V mutant retained 11% activity of the wild-type F2 protein. CONCLUSIONS There is a broad clinical spectrum of P450scc deficiency. Partial loss-of-function CYP11A1 mutation can present with a hormonal phenotype indistinguishable from nonclassic lipoid CAH.


Molecular Endocrinology | 2011

Transcriptional Regulation of the Human P450 Oxidoreductase Gene: Hormonal Regulation and Influence of Promoter Polymorphisms

Meng Kian Tee; Ningwu Huang; Izabella Damm; Walter L. Miller

P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at -325/-1 bp from the untranslated exon. Common human POR polymorphisms at -208 and -173 had little influence on transcription, but the polymorphism at -152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between -249 and -261 and binding of thyroid hormone receptor-β (TRβ) at -240/-245. Chromatin immunoprecipitation showed that Smad3, Smad4, TRα, TRβ, and estrogen receptor-α were bound between -374 and -149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T(3) exerts major tropic effects via TRβ, with TRα, estrogen receptor-α, Smad3, and Smad4 exerting lesser, modulatory effects. T(3) also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TRβ and Smad3/4 in its expression and indicating that the common polymorphism at -152 may play a role in genetic variation in steroid biosynthesis and drug metabolism.


Endocrinology | 2008

Pathways Leading to Phosphorylation of P450c17 and to the Posttranslational Regulation of Androgen Biosynthesis

Meng Kian Tee; Qing Dong; Walter L. Miller

Cytochrome P450c17 (P450c17) is the single enzyme that catalyzes steroid 17alpha-hydroxylase and 17,20 lyase activities and hence is the crucial decision-making step that determines the class of steroid made in a steroidogenic cell. Although both activities are catalyzed on a single active site, the ratio of these activities is regulated by posttranslational events. Serine phosphorylation of P450c17 increases 17,20 lyase activity by increasing the enzymes affinity for its redox partner, P450 oxidoreductase. We searched for the relevant kinase(s) that phosphorylates P450c17 by microarray studies and by testing of kinase inhibitors. Microarrays show that 145 of the 278 known serine/threonine kinases are expressed in human adrenal NCI-H295A cells, only six of which were induced more than 2-fold by treatment with 8-Br-cAMP. Key components of the ERK1/2 and MAPK/ERK kinase (MEK)1/2 pathways, which have been implicated in the insulin resistance of PCOS, were not found in NCI-H295A cells, implying that these pathways do not participate in P450c17 phosphorylation. Treatment with various kinase inhibitors that probe the protein kinase A/phosphatidylinositol 3-kinase/Akt pathway and the calcium/calmodulin/MAPK kinase pathway had no effect on the ratio of 17,20 lyase activity to 17alpha-hydroxylase activity, appearing to eliminate these pathways as candidates leading to the phosphorylation of P450c17. Two inhibitors that target the Rho-associated, coiled-coil containing protein kinase (ROCK)/Rho pathway suppressed 17,20 lyase activity and P450c17 phosphorylation, both in NCI-H295A cells and in COS-1 cells transfected with a P450c17 expression vector. ROCK1 phosphorylated P450c17 in vitro, but that phosphorylation did not affect 17,20 lyase activity. We conclude that members of the ROCK/Rho pathway act upstream from the kinase that phosphorylates P450c17 in a fashion that augments 17,20 lyase activity, possibly acting to catalyze a priming phosphorylation.


The Journal of Clinical Endocrinology and Metabolism | 2009

Clinical, Genetic, and Enzymatic Characterization of P450 Oxidoreductase Deficiency in Four Patients

Taninee Sahakitrungruang; Ningwu Huang; Meng Kian Tee; Vishal Agrawal; William E. Russell; Patricia Crock; Nuala Murphy; Claude J. Migeon; Walter L. Miller

CONTEXT P450 oxidoreductase (POR) deficiency causes disordered steroidogenesis; severe mutations cause genital ambiguity in both sexes plus the Antley-Bixler skeletal malformation syndrome, whereas mild mutations can cause adult infertility. OBJECTIVE We describe four patients with POR deficiency and identify and characterize the activities of their mutations. A 46,XY male with micropenis and two 46,XX female infants with genital ambiguity presented with skeletal malformations, and a 46,XX adolescent presented with primary amenorrhea, elevated 17alpha-hydroxyprogesterone, and low sex steroids. METHODS The coding regions of the POR gene were sequenced, and the identified mutations were recreated in human POR cDNA expression vectors lacking 27 N-terminal residues. POR and human P450c17 were expressed in bacteria. POR activity was measured by four assays: reduction of cytochrome c, oxidation of reduced nicotinamide adenine dinucleotide phosphate, and support of the 17alpha-hydroxylase and 17,20 lyase activities of P450c17. RESULTS All four patients were compound heterozygotes for POR mutations, including five novel mutations: L577R, N185K, delE217, and frameshift mutations 1363delC and 697-698insGAAC. N185K and delE217 lacked measurable activity in the assays based on P450c17 but retained partial activity in the assays based on cytochrome c. As assessed by V(max)/Km, L577R supported 46% of 17alpha-hydroxylase activity but only 27% of 17,20 lyase activity. Computational modeling of these novel mutants revealed the structural basis for their reduced or absent activities. CONCLUSION These patients illustrate the broad clinical spectrum of POR deficiency, including amenorrhea and infertility as the sole manifestation. POR assays based on P450c17 correlate well with hormonal and clinical phenotypes.


The Journal of Clinical Endocrinology and Metabolism | 2013

Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc.

Meng Kian Tee; Michal Abramsohn; Neta Loewenthal; Mark Harris; Sudeep Siwach; Ana Kaplinsky; Barak Markus; Ohad S. Birk; Val C. Sheffield; Ruti Pavari; Eli Hershkovitz; Walter L. Miller

CONTEXT The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. OBJECTIVE We sought to expand clinical and genetic experience with P450scc deficiency. PATIENTS AND METHODS We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. RESULTS Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. CONCLUSIONS Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.


Journal of Biological Chemistry | 2014

Phosphorylation of Human Cytochrome P450c17 by p38α Selectively Increases 17,20 Lyase Activity and Androgen Biosynthesis

Meng Kian Tee; Walter L. Miller

Background: Ser/Thr phosphorylation of P450c17 increases 17,20 lyase activity and androgenic capacity. Results: Drug inhibition and siRNA knockdowns in adrenal cells implicate p38α, which phosphorylated bacterially expressed P450c17, doubling 17,20 lyase activity. Conclusion: Phosphorylation of P450c17 by p38α provides a post-translational mechanism distinguishing glucocorticoid from sex steroid synthesis. Significance: p38α pathways may participate in hyperandrogenic states and provide targets for glucocorticoid-sparing inhibition of androgen synthesis. Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event.


Journal of Leukocyte Biology | 2008

Natural and recombinant human glycodelin activate a proapoptotic gene cascade in monocyte cells

Meng Kian Tee; Jean-Louis Vigne; Jie Yu; Robert N. Taylor

Glycodelin‐A (GdA) is a member of the superfamily of lipocalins and the predominant glycoprotein secreted by human and primate endometrium in the secretory and early pregnancy phases. GdA can inhibit NK cell activity, T cell proliferation, and chemotaxis of monocytes. Its physiological function is thought to mediate immunotolerance at the fetomaternal interface. In the present studies, we engineered recombinant Gd (rGd) in yeast and tested its biological effects on monocyte viability. rGd, like the natural, purified endometrial GdA, is glycosylated and secreted, and they both induced apototic changes in monocytic U937 cells and primary human monocytes. Trypan blue exclusion, nucleosome release, DNA laddering, and immunocytochemistry to detect free 3′‐OH DNA ends were used to characterize the effects of GdA and rGd. Using U937 cells as a model, cDNA microarray analyses revealed several pro‐ and antiapoptotic genes that were up‐ and down‐regulated, respectively, in accordance with the kinetics of rGd‐induced monocyte cell death. Real‐time RT‐PCR confirmed that Bad, Bax, and TNF‐R1 gene expression were increased, whereas Bcl‐2A1 and a proliferation‐inducing ligand (APRIL) were reduced by rGd. Transfection assays in U937 cells indicated that the immunomodulatory actions of rGd were associated with NF‐κB inhibition. Western blotting of U937 and primary monocyte lysates demonstrated that rGd activated caspase‐8, ‐2, and ‐3 to execute programmed cell death in these cells. We postulate that infiltrating monocytes and potentially other innate immune cells of the decidua might be manipulated by this glycoprotein to enhance embryonic implantation rates or conversely, to develop novel contraceptive strategies.


Endocrinology | 2010

Human cytochrome p450c17: single step purification and phosphorylation of serine 258 by protein kinase a.

Yue-Hao Wang; Meng Kian Tee; Walter L. Miller

Cytochrome P450c17 (P450c17) is the single microsomal enzyme that catalyzes steroid 17alpha-hydroxylase and 17,20 lyase activities. The ratio of lyase to hydroxylase activity of human P450c17 determines whether steroidogenesis leads to the synthesis of cortisol or sex steroids. This ratio is regulated posttranslationally by factors that influence the efficiency of electron transfer from P450 oxidoreductase to P450c17. One factor favoring more efficient electron transfer and 17,20 lyase activity is cAMP-dependent serine/threonine phosphorylation of P450c17. Identifying the responsible kinase(s) and the P450c17 residues that undergo phosphorylation has been challenging, partly because of difficulties in preparing biochemically useful amounts of pure, catalytically active P450c17. We describe a modified strategy for preparing P450c17 in which the traditional carboxy-terminal 4xHis tag is replaced by 3xGly6xHis. This construct permits more rotational freedom of the protein when bound to the nickel affinity column, reducing steric associations between the protein and the column, and permitting a single-step chromatographic purification to apparent homogeneity. Using this vector, we explored P450c17 phosphorylation by mutagenesis of Ser and/or Thr residues to Asp or Glu to mimic the approximate size and charge of phospho-Ser or phospho-Thr. This strategy did not identify Ser and/or Thr site(s) that increase the ratio of lyase to hydroxylase activity, suggesting that the regulatory phosphorylation strategy of human P450c17 is very complicated. Although previous work has excluded protein kinase A (PKA) as the responsible kinase, the cAMP-inducible nature of the phosphorylation-associated increase in lyase activity suggests that PKA may play a role, possibly as a priming kinase. Using our novel vector and a series of mutations, we identified the P450c17 site phosphorylated by PKA as Ser258.


The Journal of Pediatrics | 2013

Distinguishing Deficiencies in the Steroidogenic Acute Regulatory Protein and the Cholesterol Side Chain Cleavage Enzyme Causing Neonatal Adrenal Failure

Zoran S. Gucev; Meng Kian Tee; David Chitayat; Diane K. Wherrett; Walter L. Miller

OBJECTIVES To determine the genetic basis of disordered steroidogenesis in Kuwaiti siblings. STUDY DESIGN Two siblings (46,XX and 46,XY) had normal female external genitalia and severe glucocorticoid and mineralocorticoid deficiency presenting in the first month of life. Abdominal ultrasonography showed normal size adrenal glands, suggesting cholesterol side chain cleavage enzyme (P450scc) deficiency. The CYP11A1 gene encoding P450scc and the STAR gene encoding the steroidogenic acute regulatory protein (StAR) were directly sequenced from leukocyte DNA. RESULTS All exons and intron/exon boundaries of the CYP11A1 gene were normal; the STAR gene was homozygous for a novel 14-base deletion/frameshift in exon 4 (g.4643_4656del), so that no functional protein could be produced. Both parents and an unaffected sibling were heterozygous; zygosity was confirmed with a BsmF1 restriction fragment length polymorphism. CONCLUSIONS Unlike most patients with StAR deficiency, our patients did not have the massive adrenal hyperplasia typical of congenital lipoid adrenal hyperplasia. The distinction between StAR and P450scc deficiency may require gene sequencing.

Collaboration


Dive into the Meng Kian Tee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ningwu Huang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vishal Agrawal

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge