Meng Wei Lin
China Medical University (PRC)
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meng Wei Lin.
Food and Chemical Toxicology | 2009
Jai Sing Yang; Guang Wei Chen; Te Chun Hsia; Heng Chien Ho; Chin Chin Ho; Meng Wei Lin; Song Shei Lin; Ru Duan Yeh; Siu Wan Ip; Hsu Fung Lu; Jing Gung Chung
In this study, we investigated the effects of DADS on human colon cancer cell line COLO 205 on cell cycle arrest and apoptosis in vitro. After 24 h treatment of COLO 205 cells with DADS, the dose- and time-dependent decreases of viable cells were observed and the IC50 was 22.47 microM. The decreased percentages of viable cells are associated with the production of ROS. Treatment of COLO 205 cells with DADS resulted in G2/M phase arrest and apoptosis occurrence through the mitochondrial-pathway (Bcl-2, Bcl-xL down-regulation and Bak, Bax up-regulation). DADS increased cyclin B, cdc25c-ser-216-9 and Wee1 but did not affect CDK1 protein and gene expression within 24 h of treatment. DADS-induced apoptosis was examined and confirmed by DAPI staining and DNA fragmentation assay. DADS promoted caspase-3, -8 and -9 activity and induced apoptosis were accompanied by increasing the levels of Fas, phospho-Ask1 and -JNK, p53 and decreasing the mitochondrial membrane potential which then led to release the cytochrome c, cleavage of pro-caspase-9 and -3. The COLO 205 cells were pre-treated with JNK inhibitor before leading to decrease the percentage of apoptosis which was induced by DADS. Inhibition of caspase-3 activation blocked DADS-induced apoptosis on COLO 205 cells.
Food and Chemical Toxicology | 2012
Yi Shih Ma; Shu Wen Weng; Meng Wei Lin; Chi Cheng Lu; Jo Hua Chiang; Jai Sing Yang; Kuang Chi Lai; Jing Pin Lin; Nou Ying Tang; Jaung Geng Lin; Jing Gung Chung
Emodin, an active natural anthraquinone derivative, is found in the roots and rhizomes of numerous Chinese medicinal herbs and exhibits anticancer effects on many types of human cancer cell lines. The aim of this study investigated that emodin induced apoptosis of human colon cancer cells (LS1034) in vitro and inhibited tumor nude mice xenografts bearing LS1034 in vivo. In in vitro study, emodin induced cell morphological changes, decreased the percentage of viability, induced G2/M phase arrest and increased ROS and Ca(2+) productions as well as loss of mitochondrial membrane potential (ΔΨ(m)) in LS1034 cells. Emodin-triggered apoptosis was also confirmed by DAPI staining and these effects are concentration-dependent. Western blot analysis indicated that the protein levels of cytochrome c, caspase-9 and the ratio of Bax/Bcl-2 were increased in LS1034 cells after emodin exposure. Emodin induced the productions of ROS and Ca(2+) release, and altered anti- and pro-apoptotic proteins, leading to mitochondrial dysfunction and activations of caspase-9 and caspase-3 for causing cell apoptosis. In in vivo study, emodin effectively suppressed tumor growth in tumor nude mice xenografts bearing LS1034. Overall, the potent in vitro and in vivo antitumor activities of emodin suggest that it might be developed for treatment of colon cancer in the future.
International Journal of Oncology | 2012
Shih Chang Tsai; Jai Sing Yang; Shu Fen Peng; Chi Cheng Lu; Jo Hua Chiang; Jing Gung Chung; Meng Wei Lin; Jen Kun Lin; Sakae Amagaya; Cinderella Wai Shan Chung; Theng Thang Tung; Wen Wen Huang; Michael T. Tseng
Bufalin is the major component of Chan-Su (a traditional Chinese medicine, TCM) extracts from the venom of Bufo bufo gargarizan. In the present study, we investigated the pharmacological mechanisms of cell cycle arrest and autophagic cell death induced by bufalin in SK-HEP-1 human hepatocellular carcinoma cells in vitro. Bufalin inhibited cell survival by MTT assay and increased cell death by trypan blue exclusion assay in a concentration-dependent manner. In addition, bufalin induced G2/M phase arrest by reducing CDK1 activity. Bufalin triggered DNA fragmentation and apoptotic cell death in SK-HEP-1 cells by DNA gel electrophoresis, TUNEL and caspase-3 activity assay, while bufalin induced autophagic cell death by double-membrane vacuoles (transmission electron microscopy, TEM), acidic vesicular organelles (acridine orange staining) and cleavage of microtubule-associated protein 1 light chain 3 (LC3). Protein expression levels of cyclin A and B, CDK1, phospho-CDK1 (Thr161), Cdc25c, phospho-Cdc25c (Ser198), phospho-AKT (Thr308), phospho-AKT (Ser473), phospho‑mTOR (Ser2481) were downregulated. In contrast, protein expression levels of the Chk1, Wee1, LC3-II, Beclin-1, Atg 5, Atg 7 and Atg 12 were upregulated in SK-HEP-1 cells after bufalin treatment. Inhibition of autophagy by 3-methyladenine (an inhibitor of class III phosphatidylinositol-3 kinase; 3-MA) or bafilomycin A1 (an inhibitor of the vacuolar proton pump of lysosomes and endosomes) reduced the effect of bufalin on cell viability and enhanced the effect of bufalin on apoptosis. In conclusion, bufalin triggered autophagic cell death and G2/M phase arrest through the AKT/mTOR signaling pathway in SK-HEP-1 cells. Our findings showed that bufalin may be potentially efficacious in the treatment of human hepatocellular carcinoma.
Journal of Pharmacology and Experimental Therapeutics | 2009
Tzu Ching Kuo; Jai Sing Yang; Meng Wei Lin; Shu Chun Hsu; Jen Jyh Lin; Hui Ju Lin; Te Chun Hsia; Ching Lung Liao; Mei Due Yang; Ming Jen Fan; Wellington Gibson Wood; Jing Gung Chung
1,3,8-Trihydroxy-6-methylanthaquinone (emodin) is recognized as an antiproliferative compound. In the present study, however, we show that emodin has both toxic and survival effects in glioma cells and that the survival effects involve Mdr1a. Emodin inhibited the proliferation and induced apoptosis of C6 cells in a 12-h treatment, but C6 cells survived a 72-h drug treatment, indicating resistance to emodin. Emodin-induced apoptosis was reduced by inhibition of the expression and activation of apoptosis-associated proteins including p53, Bax, Bcl-2, Fas, and caspase-3. C6 cells could express antioxidant proteins (superoxide dismutase and catalase) to decrease reactive oxygen species-induced cytotoxicity of emodin and overexpress multidrug resistance genes (Mdr1a, MRP2, MRP3, and MRP6) to decrease the intracellular accumulation of emodin. Electrophoretic mobility shift analysis showed that emodin decreased nuclear factor κB (NF-κB) expression in 24 h of treatment, but in 48 h, emodin increased NF-κB activity. A confocal microscope showed that emodin induced NF-κB translocation from cytoplasm to nuclei. C6 cells would activate the mitogen-activated protein kinase survival pathway and express the DNA repair gene (MGMT) and associated proteins (PARP and XRCC1) to recover the cell activity. C6 cells also expressed GRP78 to decrease emodin-induced endoplasmic reticulum (ER) stress that would cause apoptosis in C6 cells, and GRP78 inhibited the expression of GADD153 to enhance the expression of Bcl-2 that could balance the ER- and mitochondria-induced apoptosis of C6 cells.
Evidence-based Complementary and Alternative Medicine | 2012
Wen Wen Huang; Jai Sing Yang; Meng Wei Lin; Po Yuan Chen; Shang Ming Chiou; Fu Shin Chueh; Yu Hsuan Lan; Shu Jen Pai; Minoru Tsuzuki; Wai Jane Ho; Jing Gung Chung
Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cells growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells.
International Journal of Oncology | 2012
Mann-Jen Hour; Shih Chang Tsai; Hsi Chin Wu; Meng Wei Lin; Jing Gung Chung; Jin-Bin Wu; Jo Hua Chiang; Minoru Tsuzuki; Jai Sing Yang
Quinazolinone compounds have been shown to have antitumor activity in many human cancer cell lines. In the present study, we investigated the anti-metastatic activity of MJ-33 (2-(3-ethoxyphenyl)-6-pyrrolidinylquinazolinone), a novel quinazolinone derivate, and the signaling pathway of MJ-33 in human prostate cells. MJ-33 exhibited a growth inhibitory effect on DU145, LNCaP and PC-3 cells by MTT assay. DU145 cells showed greater sensitivity to the growth inhibition of MJ-33 than that of LNCaP and PC-3 cells. MJ-33 also had an inhibitory effect on the invasion, migration and adhesion of DU145 cells using Boyden chamber transwell assays, wound-healing and adhesion assay. In addition, MJ-33 inhibited cell metastasis through the reduction of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (u-PA) enzyme activities and protein levels by gelatin zymography assay and western blot analysis, respectively. MJ-33 reduced the protein levels of p-JNK, p-p38, p-ERK, p-AKT and nuclear NF-κB (p65), c-fos and c-Jun protein levels by western blotting. Using electrophoretic mobility-shift assay (EMSA), we demonstrated that MJ-33 blocked the activation of transcription factor AP-1 (activator protein-1) and NF-κB, which led to the inhibition of MMP-2 and MMP-9 expression. Collectively, our data showed that MJ-33 decreased protein levels of MAPKs (mitogen-activated protein kinases), AKT, AP-1 and NF-κB, resulting in the inhibition of matrix metalloproteinases. Downregulation of MMP-2 and MMP-9 reduces the invasion, migration and adhesion activities of DU145 cells. MJ-33 may be a promising agent against prostate cancer metastasis.
Environmental Toxicology | 2016
Fu Shun Yu; Chun Shu Yu; Jaw Chyun Chen; Jiun Long Yang; Hsu Feng Lu; Shu Jen Chang; Meng Wei Lin; Jing Gung Chung
Tetrandrine is a bisbenzylisoquinoline alkaloid that was found in the Radix Stephania tetrandra S Moore. It had been reported to induce cytotoxic effects on many human cancer cells. In this study, we investigated the cytotoxic effects of tetrandrine on human oral cancer HSC‐3 cells in vitro. Treatments of HSC‐3 cells with tetrandrine significantly decreased the percentage of viable cells through the induction of autophagy and apoptosis and these effects are in concentration‐dependent manner. To define the mechanism underlying the cytotoxic effects of tetrandrine, we investigated the critical molecular events known to regulate the apoptotic and autophagic machinery. Tetrandrine induced chromatin condensation, internucleosomal DNA fragmentation, activation of caspases‐3, ‐8, and ‐9, and cleavage of poly (ADP ribose) polymerase (PARP) that were associated with apoptosis, and it also enhanced the expression of LC3‐I and ‐II that were associated with the induction of autophagy in human squamous carcinoma cell line (HSC‐3) cells. Tetrandrine induced autophagy in HSC‐3 cells was significantly attenuated by bafilomycin A1 (inhibitor of autophagy) pre‐treatment that confirmed tetrandrine induced cell death may be associated with the autophagy. In conclusion, we suggest that tetrandrine induced cell death may be through the induction of apoptosis as well as autophagy in human oral cancer HSC‐3 cells via PARP, caspases/Becline I/LC3‐I/II signaling pathways.
in Vivo | 2008
Siu Wan Ip; Shin Shin Liao; Shuw Yuan Lin; Jing Pin Lin; Jai Sing Yang; Meng Liang Lin; Guang Wei Chen; Hsu Feng Lu; Meng Wei Lin; Sang Mi Han; Jing Gung Chung
Anticancer Research | 2008
Kung Wen Lu; Ming Li Tsai; Jung Chou Chen; Shu Chun Hsu; Te Chun Hsia; Meng Wei Lin; An Cheng Huang; Yung Hsien Chang; Siu Wan Ip; Hsu Feng Lu; Jing Gung Chung
Anticancer Research | 2008
Shu Chun Hsu; Jih Hung Lu; Chao Lin Kuo; Jai Sing Yang; Meng Wei Lin; Guang Wei Chen; Chin Cheng Su; Hsu Fung Lu; Jing Gung Chung