Meng-Yeh Lin
National Chiao Tung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meng-Yeh Lin.
Journal of Chemical Physics | 2008
Yu-Jong Wu; Meng-Yeh Lin; Bing-Ming Cheng; Hui-Fen Chen; Yuan-Pern Lee
Irradiation of samples of solid Ne near 3.0 K containing ethene (C(2)H(4)) with vacuum ultraviolet radiation at 120 nm from synchrotron yielded new spectral lines at 3141.0, 2953.6, 2911.5, 1357.4, 677.1, 895.3, and 857.0 cm(-1). These features are assigned to alpha-CH stretching (nu(1)), CH(2) antisymmetric stretching (nu(2)), CH(2) symmetric stretching (nu(3)), CH(2)-bending (nu(5)), HCCH cis bending (nu(7)), CH(2) out-of-plane bending (nu(8)), and alpha-CH out-of-plane bending (nu(9)) modes of C(2)H(3), respectively, based on results of (13)C- and D-isotopic experiments and quantum-chemical calculations. These calculations using density-functional theory (B3LYP and PW91PW91/aug-cc-pVTZ) predict vibrational wavenumbers, IR intensities, and isotopic ratios of vinyl radical that agree satisfactorily with our experimental results.
The Astrophysical Journal | 2010
Yu-Jong Wu; Meng-Yeh Lin; Sheng-Lung Chou; Hui-Fen Chen; Hsiao-Chi Lu; Hong-Kai Chen; Bing-Ming Cheng
The absorption spectrum of ethyne, C2H2, in solid Ar was measured in the wavelength region 107-220 nm with light from a synchrotron. Based on that absorption, irradiation of samples of ethyne dispersed in neon with vacuum-ultraviolet (VUV) radiation yielded various products that were identified through their infrared absorption spectra including C n (n = 3-12), C2H, C2H3, C4H, C4H2, C8H–, and C8H2. The efficiency of photolysis of ethyne and the nature of photoproducts depend on the selected wavelength of VUV light. Information about the photodissociation of C2H2 with various photon energies and the formation and identification of large carbon clusters and hydrides at low temperature might be useful in photochemical models to simulate the composition of the atmosphere of Titan and as a source of aerosols.
The Astrophysical Journal | 2009
Yu-Jong Wu; Hui-Fen Chen; Cristopher Camacho; Henryk A. Witek; Sheng-Chuan Hsu; Meng-Yeh Lin; Sheng-Lung Chou; J. F. Ogilvie; Bing-Ming Cheng
Photolysis of methane dispersed (1/1000) in solid Ne at 3 K with vacuum-ultraviolet light from a synchrotron produced infrared absorption lines of several products, including new lines at 3319.3 and 1955.5 cm–1. Based on experiments with isotopic labeling and results of quantum-chemical calculations, these lines are assigned to the C-H stretching and C=C stretching modes, respectively, of interstellar molecule linear C5H radicals.
Astrophysical Journal Supplement Series | 2011
Bing-Ming Cheng; Hui-Fen Chen; Hsiao-Chi Lu; Hong-Kai Chen; M. S. Alam; Sheng-Lung Chou; Meng-Yeh Lin
Absorption spectra and absorption cross sections of gaseous acetylene, C2H2, at 298 and 85?K were measured in the wavelength range 110-155?nm with a slit-jet system coupled to a synchrotron as a source of vacuum ultraviolet light. Using published spectral parameters of C2H2, we simulated the absorption profile for the Rydberg transition to state 4R 0 in the range 124.6-125.1?nm, according to which the temperature of the jet-expanded sample at stagnation pressure 200 Torr is 85?? 5?K. Our cross sections of C2H2 are applicable for determining properties sensitive to temperature for diagnostic work on Saturn and Titan.
Analytical Chemistry | 2014
Hsiao-Chi Lu; Meng-Yeh Lin; Yu-Chain Peng; Jen-Iu Lo; Sheng-Lung Chou; Bing-Ming Cheng
Upon excitation at 170-240 nm, diamonds emit strong luminescence in wavelength range of 300-700 nm. The spectral features observed in the photoluminescence excitation (PLE) spectra show two vibrational progressions, A and B, related to nitrogen defects N2 and N4, respectively. We used PLE spectra excited in region 170-240 nm to identify the type of diamond and demonstrate quantitative analysis of the B center as a N4 nitrogen defect in diamonds; the least detectable concentration of the N4 nitrogen defect is about 13 ppb, and the sensitivity of PLE is about 30 times than that practicable with infrared absorption spectra.
ChemPhysChem | 2009
Yu-Jong Wu; Meng-Yeh Lin; Sheng-Chuan Hsu; Bing-Ming Cheng
Photoproduct signature: Irradiation of solid hydrogen near 3 K containing NO with vacuum-UV light from synchrotron radiation yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1) (see figure). These new lines are assigned to vibrational modes of t-HNOH. This photoproduct is formed from electronically excited NO reacting with neighboring hydrogen in the solid sample.Irradiation of solid H(2) near 3 K containing NO with vacuum-ultraviolet light from a synchrotron yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1). The structures of four possible structural isomers: H(2)NO, t-HNOH, c-HNOH and NOH(2), their vibrational wavenumbers, IR intensities and D-isotopic shifts are calculated with density-functional theory according to B3LYP and PW91PW91/aug-cc-pVTZ methods. Based on the results of those calculations and of experiments with deuterium labeling, we assign the new lines to nu(4) (cis bending), nu(5) (N==O stretching) and nu(6) (out-of-plane deformation) modes, respectively, of t-HNOH. This photoproduct is formed through reaction of electronically excited NO with neighboring H(2) in the solid sample.
Astrophysical Journal Supplement Series | 2015
Jen-Iu Lo; Sheng-Lung Chou; Yu-Chain Peng; Meng-Yeh Lin; Hsiao-Chi Lu; Bing-Ming Cheng
The irradiation of pure solid N{sub 2} at 3 K with far-ultraviolet light from a synchrotron produced infrared absorption lines at 1657.7, 1655.6, and 1652.4 cm{sup −1} and an ultraviolet absorption line at 272.0 nm, which are characteristic of the product N{sub 3}. The threshold wavelength at which N{sub 3} was generated was 145.6 ± 2.9 nm, corresponding to an energy of 8.52 ± 0.17 eV. The photolysis of isotopically labeled {sup 15}N{sub 2} at 3 K consistently led to the formation of {sup 15}N{sub 3} with the same threshold wavelength of 145.6 ± 2.9 nm for its formation. The photolysis of CH{sub 4} in nitrogen ice in low concentrations also led to the formation of N{sub 3}, together with CH{sub 3}, HCN, and HNC, with the same threshold wavelength of 145.6 ± 2.9 nm. These results indicate that N{sub 3} radicals may play an important role in the photochemistry of nitrogen ices in astronomical environments.
Journal of Chemical Physics | 2008
Hui-Fen Chen; Chi-Wei Liang; Jim J. Lin; Yuan-Pern Lee; J. F. Ogilvie; Z. F. Xu; Meng-Yeh Lin
The reaction between O((1)D) and C(6)H(6) (or C(6)D(6)) was investigated with crossed-molecular-beam reactive scattering and time-resolved Fourier-transform infrared spectroscopy. From the crossed-molecular-beam experiments, four product channels were identified. The major channel is the formation of three fragments CO+C(5)H(5)+H; the channels for formation of C(5)H(6)+CO and C(6)H(5)O+H from O((1)D)+C(6)H(6) and OD+C(6)D(5) from O((1)D)+C(6)D(6) are minor. The angular distributions for the formation of CO and H indicate a mechanism involving a long-lived collision complex. Rotationally resolved infrared emission spectra of CO (1<or=upsilon<or=6) and OH (1<or=upsilon<or=3) were recorded with a step-scan Fourier-transform spectrometer. At the earliest applicable period (0-5 mus), CO shows a rotational distribution corresponding to a temperature of approximately 1480 K for upsilon=1 and 920-700 K for upsilon=2-6, indicating possible involvement of two reaction channels; the vibrational distribution of CO corresponds to a temperature of approximately 5800 K. OH shows a rotational distribution corresponding to a temperature of approximately 650 K for upsilon=1-3 and a vibrational temperature of approximately 4830 K. The branching ratio of [CO]/[OH]=2.1+/-0.4 for O((1)D)+C(6)H(6) and [CO]/[OD]>2.9 for O((1)D)+C(6)D(6) is consistent with the expectation for an abstraction reaction. The mechanism of the reaction may be understood from considering the energetics of the intermediate species and transition states calculated at the G2M(CC5) level of theory for the O((1)D)+C(6)H(6) reaction. The experimentally observed branching ratios and deuterium isotope effect are consistent with those predicted from calculations.
ChemPhysChem | 2017
Jen-Iu Lo; Sheng-Lung Chou; Hsiao-Chi Lu; Yu-Chain Peng; Meng-Yeh Lin; Bing-Ming Cheng; J. F. Ogilvie
Apart from products H, B, BH, BH2 and BH3 identified from their emission spectra in the UV/Vis region, photolysis of diborane(6) dispersed in solid neon at 4 K with far-ultraviolet light from a synchrotron led to observation of absorption line (0,0) of the electronic transition A 3 Σu- ←X 3 Σg- of B2 at 326.39 nm. Absorption lines (1,0) of 11 B2 , 11 B10 B and 10 B2 were recorded at 316.63, 316.40 and 316.15 nm, respectively. ΔG1/2 of state A 3 Σu- for 11 B2 , 11 B10 B and 10 B2 in solid neon are accordingly derived to be 945, 968 and 993 cm-1 , respectively. Weak lines (0,1) of 11 B2 at 29586 cm-1 and of 11 B10 B at 29560 cm-1 , corresponding to 1042±30 and 1068±30 cm-1 for vibrational modes in the electronic ground state, were recorded in emission. An absorption line recorded at 1066.5±0.5 cm-1 in infrared spectra after photolysis of either B2 H6 in Ne or B2 D6 with D2 in Ne is thus attributed to 11 B10 B.
Analytical Chemistry | 2015
Hsiao-Chi Lu; Yu-Chain Peng; Meng-Yeh Lin; Sheng-Lung Chou; Jen-Iu Lo; Bing-Ming Cheng
Photoluminescent (PL) spectra of synthetic diamond powders at temperatures between 10 and 300 K were excited with synchrotron radiation in the wavelength range 125-375 nm. Prominent spectral PL features were detected at 484.6 and 489.0 nm (2.559 and 2.535 eV), associated with nickel defect. During our measurement of PL excitation (PLE) spectra of Ni defect in diamond, we observed a distinct PLE line at 215 nm for the first time. We thereby suggest the use of UV-PL spectra excited in the region 200-220 nm to analyze and to identify nickel defect in diamonds.