Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mengjin Yang is active.

Publication


Featured researches published by Mengjin Yang.


Journal of Materials Chemistry | 2015

Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells

Yuanyuan Zhou; Mengjin Yang; Wenwen Wu; Alexander L. Vasiliev; Kai Zhu; Nitin P. Padture

The room-temperature solvent–solvent extraction (SSE) concept is used for the deposition of hybrid-perovskite thin films over large areas. In this simple process, perovskite precursor solution is spin-coated onto a substrate, and instead of the conventional thermal annealing treatment, the coated substrate is immediately immersed in a bath of another solvent at room temperature. This results in efficient extraction of the precursor-solvent and induces rapid crystallization of uniform, ultra-smooth perovskite thin films. The mechanisms involved in the SSE process are studied further, and its versatility in depositing high quality thin films of controlled thicknesses (20 to 700 nm) and various compositions (CH3NH3PbI(3−x)Brx; x = 0, 1, 2, or 3) is demonstrated. Planar perovskite solar cells (PSCs) based on SSE-deposited CH3NH3PbI3 perovskite thin films deliver power conversion efficiency (PCE) up to 15.2%, and most notably an average PCE of 10.1% for PSCs with sub-100 nm semi-transparent perovskite thin films. The SSE method has generic appeal, and its key attributes—room-temperature process, rapid crystallization, large-area uniform deposition, film-thickness control, ultra-smoothness, and compositional versatility—make the SSE method potentially suitable for roll-to-roll scalable processing of hybrid-perovskite thin films for future multifunctional PSCs.


Journal of Physical Chemistry Letters | 2016

Origin of J-V Hysteresis in Perovskite Solar Cells.

Bo Chen; Mengjin Yang; Shashank Priya; Kai Zhu

High-performance perovskite solar cells (PSCs) based on organometal halide perovskite have emerged in the past five years as excellent devices for harvesting solar energy. Some remaining challenges should be resolved to continue the momentum in their development. The photocurrent density-voltage (J-V) responses of the PSCs demonstrate anomalous dependence on the voltage scan direction/rate/range, voltage conditioning history, and device configuration. The hysteretic J-V behavior presents a challenge for determining the accurate power conversion efficiency of the PSCs. Here, we review the recent progress on the investigation of the origin(s) of J-V hysteresis behavior in PSCs. We discuss the impact of slow transient capacitive current, trapping and detrapping process, ion migrations, and ferroelectric polarization on the hysteresis behavior. The remaining issues and future research required toward the understanding of J-V hysteresis in PSCs will also be discussed.


Advanced Materials | 2015

Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15%

Mengjin Yang; Yuanyuan Zhou; Yining Zeng; C.-S. Jiang; Nitin P. Padture; Kai Zhu

The preparation of uniform, high-crystallinity planar perovskite films with high-aspect-ratio grains over a square-inch area is demonstrated. The best power conversion efficiency (PCE) of 16.3% (stabilized output of ≈15.6%) is obtained for a planar perovskite solar cell (PSC) with 1.2 cm2 active area, and the PCE jumps to 18.3% (stabilized output of ≈17.5%) for a PSC with a 0.12 cm2 active area.


Nature Communications | 2015

Low Surface Recombination Velocity in Solution-Grown CH3NH3PbBr3 Perovskite Single Crystal

Ye Yang; Yong Yan; Mengjin Yang; Sukgeun Choi; Kai Zhu; Joseph M. Luther; Matthew C. Beard

Organic-inorganic hybrid perovskites are attracting intense research effort due to their impressive performance in solar cells. While the carrier transport parameters such as mobility and bulk carrier lifetime shows sufficient characteristics, the surface recombination, which can have major impact on the solar cell performance, has not been studied. Here we measure surface recombination dynamics in CH3NH3PbBr3 perovskite single crystals using broadband transient reflectance spectroscopy. The surface recombination velocity is found to be 3.4±0.1 × 103 cm s−1, ∼2–3 orders of magnitude lower than that in many important unpassivated semiconductors employed in solar cells. Our result suggests that the planar grain size for the perovskite thin films should be larger than ∼30 μm to avoid the influence of surface recombination on the effective carrier lifetime.


Nano Letters | 2015

Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion

Taiyang Zhang; Mengjin Yang; Yixin Zhao; Kai Zhu

We demonstrate a facile morphology-controllable sequential deposition of planar CH3NH3PbI3 (MAPbI3) film by using a novel volume-expansion-adjustable PbI2·xMAI (x: 0.1-0.3) precursor film to replace pure PbI2. The use of additive MAI during the first step of deposition leads to the reduced crystallinity of PbI2 and the pre-expansion of PbI2 into PbI2·xMAI with adjustable morphology, which result in about 10-fold faster formation of planar MAPbI3 film (without PbI2 residue) and thus minimize the negative impact of the solvent isopropanol on perovskites during the MAI intercalation/conversion step. The best efficiency obtained for a planar perovskite solar cell based on PbI2·0.15MAI is 17.22% (under one sun illumination), which is consistent with the stabilized maximum power output at an efficiency of 16.9%.


Journal of Physical Chemistry Letters | 2015

Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells.

Bo Chen; Mengjin Yang; Xiaojia Zheng; Congcong Wu; Wenle Li; Yongke Yan; Juan Bisquert; Germà Garcia-Belmonte; Kai Zhu; Shashank Priya

In the past five years, perovskite solar cells (PSCs) based on organometal halide perovskite have exhibited extraordinary photovoltaic (PV) performance. However, the PV measurements of PSCs have been widely recognized to depend on voltage scanning condition (hysteretic current density-voltage [J-V] behavior), as well as on voltage treatment history. In this study, we find that varied PSC responses are attributable to two causes. First, capacitive effect associated with electrode polarization provides a slow transient non-steady-state photocurrent that modifies the J-V response. Second, modification of interfacial barriers induced by ion migration can modulate charge-collection efficiency so that it causes a pseudo-steady-state photocurrent, which changes according to previous voltage conditioning. Both phenomena are strongly influenced by ions accumulating at outer interfaces, but their electrical and PV effects are different. The time scale for decay of capacitive current is on the order of seconds, whereas the slow redistribution of mobile ions requires several minutes.


Journal of Physical Chemistry Letters | 2015

Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy.

Ye Yang; Mengjin Yang; Zhen Li; Ryan W. Crisp; Kai Zhu; Matthew C. Beard

Understanding carrier recombination in semiconductors is a critical component when developing practical applications. Here we measure and compare the monomolecular, bimolecular, and trimolecular (Auger) recombination rate constants of CH3NH3PbBr3 and CH3NH3PbI3. The monomolecular and bimolecular recombination rate constants for both samples are limited by trap-assisted recombination. The bimolecular recombination rate constant for CH3NH3PbBr3 is ∼3.3 times larger than that for CH3NH3PbI3 and both are in line with that found for radiative recombination in other direct-gap semiconductors. The Auger recombination rate constant is 4 times larger in lead-bromide-based perovskite compared with lead-iodide-based perovskite and does not follow the reduced Auger rate when the bandgap increases. The increased Auger recombination rate, which is enhanced by Coulomb interactions, can be ascribed to the larger exciton binding energy, ∼40 meV, in CH3NH3PbBr3 compared with ∼13 meV in CH3NH3PbI3.


Nature Communications | 2016

Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

Mengjin Yang; Taiyang Zhang; Philip Schulz; Zhen Li; Ge Li; Dong Hoe Kim; Nanjie Guo; Joseph J. Berry; Kai Zhu; Yixin Zhao

Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3−xBrx (MAPbI3−xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3−xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.


Nature Communications | 2015

Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential

Chun-Sheng Jiang; Mengjin Yang; Yuanyuan Zhou; Bobby To; Sanjini U. Nanayakkara; Joseph M. Luther; Weilie Zhou; Joseph J. Berry; Jao van de Lagemaat; Nitin P. Padture; Kai Zhu; Mowafak Al-Jassim

Organometal–halide perovskite solar cells have greatly improved in just a few years to a power conversion efficiency exceeding 20%. This technology shows unprecedented promise for terawatt-scale deployment of solar energy because of its low-cost, solution-based processing and earth-abundant materials. We have studied charge separation and transport in perovskite solar cells—which are the fundamental mechanisms of device operation and critical factors for power output—by determining the junction structure across the device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates p–n junction structure at the TiO2/perovskite interfaces and minority-carrier diffusion/drift operation of the devices, rather than the operation mechanism of either an excitonic cell or a p-i-n structure. Combining the potential profiling results with solar cell performance parameters measured on optimized and thickened devices, we find that carrier mobility is a main factor that needs to be improved for further gains in efficiency of the perovskite solar cells.


Journal of the American Chemical Society | 2016

Exceptional Morphology-Preserving Evolution of Formamidinium Lead Triiodide Perovskite Thin Films via Organic-Cation Displacement

Yuanyuan Zhou; Mengjin Yang; Shuping Pang; Kai Zhu; Nitin P. Padture

Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(═NH)NH2 (formamidine or FA) gas at 150 °C, which leads to rapid displacement of the MA(+) cations by FA(+) cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapid chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach ∼18%.

Collaboration


Dive into the Mengjin Yang's collaboration.

Top Co-Authors

Avatar

Kai Zhu

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Berry

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhen Li

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Hoe Kim

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip Schulz

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Beard

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ye Yang

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mowafak Al-Jassim

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge