Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mengxing Wang is active.

Publication


Featured researches published by Mengxing Wang.


International Journal of Nanomedicine | 2014

Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging

Sihan Xue; Yao Wang; Mengxing Wang; Lu Zhang; Xiaoxia Du; Hongchen Gu; Chunfu Zhang

In this study, a novel magnetic resonance imaging (MRI)/computed tomography (CT)/fluorescence trifunctional probe was prepared by loading iodinated oil into fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (i-fmSiO4@SPIONs). Fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) were prepared by growing fluorescent dye-doped silica onto superparamagnetic iron oxide nanoparticles (SPIONs) directed by a cetyltrimethylammonium bromide template. As prepared, fmSiO4@SPIONs had a uniform size, a large surface area, and a large pore volume, which demonstrated high efficiency for iodinated oil loading. Iodinated oil loading did not change the sizes of fmSiO4@SPIONs, but they reduced the MRI T2 relaxivity (r2) markedly. I-fmSiO4@SPIONs were stable in their physical condition and did not demonstrate cytotoxic effects under the conditions investigated. In vitro studies indicated that the contrast enhancement of MRI and CT, and the fluorescence signal intensity of i-fmSiO4@SPION aqueous suspensions and macrophages, were intensified with increased i-fmSiO4@SPION concentrations in suspension and cell culture media. Moreover, for the in vivo study, the accumulation of i-fmSiO4@SPIONs in the liver could also be detected by MRI, CT, and fluorescence imaging. Our study demonstrated that i-fmSiO4@SPIONs had great potential for MRI/CT/fluorescence trimodal imaging.


Journal of Headache and Pain | 2016

Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura

Jilei Zhang; Jingjing Su; Mengxing Wang; Ying Zhao; Qian Yao; Qi-Ting Zhang; Haifeng Lu; Hui Zhang; Shuo Wang; Ge-Fei Li; Yi-Lan Wu; Feng-Di Liu; Yan-Hui Shi; Jianqi Li; Jian-Ren Liu; Xiaoxia Du

BackgroundThe precuneus/posterior cingulate cortex, which has been associated with pain sensitivity, plays a pivotal role in the default mode network. However, information regarding migraine-related alterations in resting-state brain functional connectivity in the default mode network and in local regional spontaneous neuronal activity is not adequate.MethodsThis study used functional magnetic resonance imaging to acquire resting-state scans in 22 migraineurs without aura and in 22 healthy matched controls. Independent component analysis, a data-driven method, was used to calculate the resting-state functional connectivity of the default mode network in the patient and healthy control groups. Regional homogeneity (ReHo) was used to analyse the local features of spontaneous resting-state brain activity in the migraineurs without aura.ResultsCompared with the healthy controls, migraineurs without aura showed increased functional connectivity in the left precuneus/posterior cingulate cortex within the default mode network and significant increase in ReHo values in the bilateral precuneus/posterior cingulate cortex, left pons and trigeminal nerve entry zone. In addition, functional connectivity was decreased between the areas with abnormal ReHo (using the peaks in the precuneus/posterior cingulate cortex) and other brain areas.ConclusionsThe abnormalities in the precuneus/posterior cingulate cortex suggest that migraineurs without aura may exhibit information transfer and multimodal integration dysfunction and that pain sensitivity and pian processing may also be affected.


BioMed Research International | 2015

Connectome-Scale Assessments of Functional Connectivity in Children with Primary Monosymptomatic Nocturnal Enuresis

Du Lei; Jun Ma; Jilei Zhang; Mengxing Wang; Kaihua Zhang; Fuqin Chen; Xueling Suo; Qiyong Gong; Xiaoxia Du

Primary monosymptomatic nocturnal enuresis (PMNE) is a common developmental disorder in children. Previous literature has suggested that PMNE not only is a micturition disorder but also is characterized by cerebral structure abnormalities and dysfunction. However, the biological mechanisms underlying the disease are not thoroughly understood. Graph theoretical analysis has provided a unique tool to reveal the intrinsic attributes of the connectivity patterns of a complex network from a global perspective. Resting-state fMRI was performed in 20 children with PMNE and 20 healthy controls. Brain networks were constructed by computing Pearsons correlations for blood oxygenation level-dependent temporal fluctuations among the 2 groups, followed by graph-based network analyses. The functional brain networks in the PMNE patients were characterized by a significantly lower clustering coefficient, global and local efficiency, and higher characteristic path length compared with controls. PMNE patients also showed a reduced nodal efficiency in the bilateral calcarine sulcus, bilateral cuneus, bilateral lingual gyri, and right superior temporal gyrus. Our findings suggest that PMNE includes brain network alterations that may affect global communication and integration.


Journal of Headache and Pain | 2017

Assessment of gray and white matter structural alterations in migraineurs without aura

Jilei Zhang; Yi-Lan Wu; Jingjing Su; Qian Yao; Mengxing Wang; Ge-Fei Li; Rong Zhao; Yan-Hui Shi; Ying Zhao; Qi-Ting Zhang; Haifeng Lu; Shuai Xu; Zhaoxia Qin; Guo-Hong Cui; Jianqi Li; Jian-Ren Liu; Xiaoxia Du

BackgroundMigraine constitute a disorder characterized by recurrent headaches, and have a high prevalence, a high socio-economic burden and severe effects on quality of life. Our previous fMRI study demonstrated that some brain regions are functional alterations in migraineurs. As the function of the human brain is related to its structure, we further investigated white and gray matter structural alterations in migraineurs.MethodsIn current study, we used surface-based morphometry, voxel-based morphometry and diffusion tensor imaging analyses to detect structural alterations of the white matter and gray matter in 32 migraineurs without aura compared with 32 age- and gender-matched healthy controls.ResultsWe found that migraineurs without aura exhibited significantly increased gray matter volume in the bilateral cerebellar culmen, increased cortical thickness in the lateral occipital-temporal cortex, decreased cortical thickness in the right insula, increased gyrification index in left postcentral gyrus, superior parietal lobule and right lateral occipital cortex, and decreased gyrification index in the left rostral middle frontal gyrus compared with controls. No significant change in white matter microstructure was found in DTI analyses.ConclusionThe significantly altered gray matter brain regions were known to be associated with sensory discrimination of pain, multi-sensory integration and nociceptive information processing and were consistent with our previous fMRI study, and may be involved in the pathological mechanism of migraine without aura.


European Journal of Neuroscience | 2014

Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity

Guohua Shen; Jing Zhang; Mengxing Wang; Du Lei; Guang Yang; Shanmin Zhang; Xiaoxia Du

Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non‐invasively recorded human brain activation is crucial for implementing a brain–machine interface that directly harnesses an individuals thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single‐trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor‐related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial–temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non‐invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI‐based brain–machine interface for finger movement.


Neuroscience Letters | 2016

Neural activation during imitation with or without performance feedback: An fMRI study

Kaihua Zhang; Hui Wang; Guangheng Dong; Mengxing Wang; Jilei Zhang; Hui Zhang; Weixia Meng; Xiaoxia Du

In our daily lives, we often receive performance feedback (PF) during imitative learning, and we adjust our behaviors accordingly to improve performance. However, little is known regarding the neural mechanisms underlying this learning process. We hypothesized that appropriate PF would enhance neural activation or recruit additional brain areas during subsequent action imitation. Pictures of 20 different finger gestures without any social meaning were shown to participants from the first-person perspective. Imitation with or without PF was investigated by functional magnetic resonance imaging in 30 healthy subjects. The PF was given by a real person or by a computer. PF from a real person induced hyperactivation of the parietal lobe (precuneus and cuneus), cingulate cortex (posterior and anterior), temporal lobe (superior and transverse temporal gyri), and cerebellum (posterior and anterior lobes) during subsequent imitation. The positive PF and negative PF from a real person, induced the activation of more brain areas during the following imitation. The hyperactivation of the cerebellum, posterior cingulate cortex, precuneus, and cuneus suggests that the subjects exhibited enhanced motor control and visual attention during imitation after PF. Additionally, random PF from a computer had a small effect on the next imitation. We suggest that positive and accurate PF may be helpful for imitation learning.


Scientific Reports | 2017

Visual cortex and cerebellum hyperactivation during negative emotion picture stimuli in migraine patients

Mengxing Wang; Jingjing Su; Jilei Zhang; Ying Zhao; Qian Yao; Qi-Ting Zhang; Hui Zhang; Shuo Wang; Ge-Fei Li; Jian-Ren Liu; Xiaoxia Du

Migraines are a common and undertreated disease and often have psychiatric comorbidities; however, the abnormal mechanism of emotional processing in migraine patients has not been well clarified. This study sought to investigate the different brain functional activation to neutral, positive and negative emotional stimuli between migraine and healthy subjects. Twenty-six adults with migraines and 26 healthy adults, group-matched for sex and age, participated in this experiment. Although there were no significant differences between two groups during the viewing of positive affective pictures vs. neutral affective pictures, there were different activation patterns during the viewing of negative to neutral affective pictures in the two groups; the control group showed both increased and decreased activation patterns, while the migraine subjects showed only increased activation. Negative affective pictures elicited stronger activation than neutral affective pictures in migraineurs, which included the bilateral cerebellum anterior lobe/culmen, the bilateral lingual gyri, the bilateral precuneus and the left cuneus. Our data indicated that migraine patients were hypersensitive to negative stimuli, which might provide clues to aid in the understanding of the pathophysiology and psychiatric comorbidities of migraines.


Journal of Neurology | 2017

The sensorimotor network dysfunction in migraineurs without aura: a resting-state fMRI study

Jilei Zhang; Jingjing Su; Mengxing Wang; Ying Zhao; Qi-Ting Zhang; Qian Yao; Haifeng Lu; Hui Zhang; Ge-Fei Li; Yi-Lan Wu; Yi-Sheng Liu; Feng-Di Liu; Mei-Ting Zhuang; Yan-Hui Shi; Tian-Yu Hou; Rong Zhao; Yuan Qiao; Jianqi Li; Jian-Ren Liu; Xiaoxia Du

Migraine is a common recurrent neurological disorder combining nausea, vomiting, and hypersensitivities to visual, auditory, olfactory and somatosensory stimuli. However, the dysfunction of the sensorimotor network in migraineurs has not been well clarified. In the present study, we evaluated the dysfunction of the sensorimotor network in 30 migraineurs without aura and in 31 controls by combining regional homogeneity (ReHo), amplitudes of low-frequency fluctuation (ALFF) and degree centrality (DC) analysis methods based on resting-state fMRI. A seed-based functional connectivity (FC) analysis was used to investigate whether the dysfunctional areas within the sensorimotor network exhibited abnormal FC with other brain areas. Compared to the controls, the migraineurs without aura exhibited significantly smaller ReHo, ALFF and DC values in the primary somatosensory cortex (S1) and right premotor cortex (PMC). The migraineurs showed weaker FC between the S1 and brain areas within the pain intensity and spatial discrimination pathways and trigemino-thalamo-cortical nociceptive pathway. We proposed that the dysfunction of the S1 and PMC and the decreased FC between the S1 and brain areas in migraineurs without aura may disrupt the discrimination of sensory features of pain and affect nociception pathways, and would be involved in the dysfunctional mechanism in migraine.


PLOS ONE | 2015

Abnormal Neural Responses to Emotional Stimuli but Not Go/NoGo and Stroop Tasks in Adults with a History of Childhood Nocturnal Enuresis

Mengxing Wang; Kaihua Zhang; Jilei Zhang; Guangheng Dong; Hui Zhang; Xiaoxia Du

Background Nocturnal enuresis (NE) is a common disorder in school-aged children. Previous studies have reported that children with NE exhibit structural, functional and neurochemical abnormalities in the brain, suggesting that children with NE may have cognitive problems. Additionally, children with NE have been shown to process emotions differently from control children. In fact, most cases of NE resolve with age. However, adults who had experienced NE during childhood may still have potential cognitive or emotion problems, and this possibility has not been thoroughly investigated. Methodology/Principal Findings In this work, we used functional magnetic resonance imaging (fMRI) to evaluate brain functional changes in adults with a history of NE. Two groups, consisting of 21 adults with NE and 21 healthy controls, were scanned using fMRI. We did not observe a significant abnormality in activation during the Go/NoGo and Stroop tasks in adults with a history of NE compared with the control group. However, compared to healthy subjects, young adults with a history of NE mainly showed increased activation in the bilateral temporoparietal junctions, bilateral dorsolateral prefrontal cortex, and bilateral anterior cingulate cortex while looking at negative vs. neutral pictures. Conclusions/Significance Our results demonstrate that adults with a history of childhood NE have no obvious deficit in response inhibition or cognitive control but showed abnormal neural responses to emotional stimuli.


Pediatric Research | 2015

Task positive and default mode networks during a working memory in children with primary monosymptomatic nocturnal enuresis and healthy controls

Kaihua Zhang; Jun Ma; Du Lei; Mengxing Wang; Jilei Zhang; Xiaoxia Du

Background:Nocturnal enuresis is a common developmental disorder in children, and primary monosymptomatic nocturnal enuresis (PMNE) is the dominant subtype.Methods:This study investigated brain functional abnormalities that are specifically related to working memory in children with PMNE using function magnetic resonance imaging (fMRI) in combination with an n-back task. Twenty children with PMNE and 20 healthy children, group-matched for age and sex, participated in this experiment.Results:Several brain regions exhibited reduced activation during the n-back task in children with PMNE, including the right precentral gyrus and the right inferior parietal lobule extending to the postcentral gyrus. Children with PMNE exhibited decreased cerebral activation in the task-positive network, increased task-related cerebral deactivation during a working memory task, and longer response times.Conclusion:Patients exhibited different brain response patterns to different levels of working memory and tended to compensate by greater default mode network deactivation to sustain normal working memory function. Our results suggest that children with PMNE have potential working memory dysfunction.

Collaboration


Dive into the Mengxing Wang's collaboration.

Top Co-Authors

Avatar

Xiaoxia Du

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jilei Zhang

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Haifeng Lu

East China Normal University

View shared research outputs
Top Co-Authors

Avatar

Ge-Fei Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jian-Ren Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jingjing Su

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qi-Ting Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qian Yao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ying Zhao

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge