Mengyan Nie
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mengyan Nie.
RSC Advances | 2015
Simon Watson; Mengyan Nie; L. Wang; K.R. Stokes
Self-assembled monolayers (SAMs), after originally being investigated due to their functions in changing surface wettability, have been significantly developed over the years. Many types of SAMs have been developed on a variety of substrates. However their formation mechanism, rate and quality are found to be influenced by many factors. A range of SAMs including single- and multi-component are included in this review with focus on the nano and macro tribological properties. More recently, surface initiated polymer brushes, i.e. macromolecular assemblies attached to a substrate, have emerged to be an alternative and promising method for surface modification. The ability to tether these macromolecules to tribological contacts is key to their resistance to shear under loaded contacts. This review also covers atom transfer radical polymerisation (ATRP) and the role of this technique in developing new lubrication solutions. Particular care has been taken to include the development of lubrication solutions for silicon nitride due to the importance of this material as an engineering ceramic. This paper reviews the state-of-the-art development of SAMs and polymer brushes especially the potential opportunities and challenges in applying them in tribological contacts as a lubrication solution.
IEEE Sensors Journal | 2012
Andy Cranny; Nick Harris; Mengyan Nie; J.A. Wharton; R.J.K. Wood; K.R. Stokes
Planar screen-printed platinum electrodes developed for use in corrosion monitoring have been evaluated using cyclic differential pulse voltammetry and shown to detect cupric ions (Cu2+) over a range up to 100 mM in a background of 3.5% by weight sodium chloride solution. The reduction of Cu2+ to metallic copper is shown to proceed as two successive single-electron transfer reactions involving an intermediate chemical step where the cuprous ion (Cu+) is complexed by chloride to form the dichlorocuprous anion CuCl2-. By comparison, the complexation step during the oxidation of copper to Cu2+ can involve a number of different chlorocopper(I) complexes of the general form [CuCl(n+1)]n- depending on the chloride concentration, which can make detection via a stripping reaction difficult.
Journal of Nanoparticle Research | 2015
Yan Zhang; Jinqiu Zhang; Mengyan Nie; Kai Sun; Chunhu Li; Jianqiang Yu
In2O3 quantum dots with a high crystallinity were deposited on the surface of ZnO nanorods through a chemistry bath method. The resulting In2O3-sensitizing ZnO nanorod arrays not only exhibited enhanced photoelectrochemical activity for water splitting under visible-light irradiation, but also possessed anti-photocorrosion property. The photo-induced charge-transfer property of In2O3 could be improved greatly by coupling with ZnO. This observation demonstrated that the heterojunction at the interface between In2O3 and ZnO could efficiently reduce the recombination of photo-induced electron–hole pairs and increase the lifetime of charge carriers and therefore enhance the photo-to-current efficiency of the In2O3–ZnO nanocrystalline arrays. It reveals that the heterojunction construction between two different semiconductors plays a very important role in determining the dynamic properties of their photogenerated charge carriers and their photo-to-current conversion efficiency.
Applied Physics Letters | 2016
Yi Ou; Furong Qu; Guanya Wang; Mengyan Nie; Zhigang Li; Wen Ou; Changqing Xie
By combining substrate-free structures with anodic bonding technology, we present a simple and efficient micro-electro-mechanical system (MEMS) thermal shear stress sensor. Significantly, the resulting depth of the vacuum cavity of the sensor is determined by the thickness of the silicon substrate at which Si is removed by the anisotropic wet etching process. Compared with the sensor based on a sacrificial layer technique, the proposed MEMS thermal shear-stress sensor exhibits dramatically improved sensitivity due to the much larger vacuum cavity depth. The fabricated MEMS thermal shear-stress sensor with a vacuum cavity depth as large as 525 μm and a vacuum of 5 × 10−2 Pa exhibits a sensitivity of 184.5 mV/Pa and a response time of 180 μs. We also experimentally demonstrate that the sensor power is indeed proportional to the 1/3-power of the applied shear stress. The substrate-free structures offer the ability to precisely measure the shear stress fluctuations in low speed turbulent boundary layer wind tunnels.
Materials | 2013
Mengyan Nie; J.A. Wharton; Andy Cranny; Nick Harris; R.J.K. Wood; K.R. Stokes
The ability to predict structural degradation in-service is often limited by a lack of understanding of the evolving chemical species occurring within a range of different microenvironments associated with corrosion sites. Capillary electrophoresis (CE) is capable of analysing nanolitre solution volumes with widely disparate concentrations of ionic species, thereby producing accurate and reliable results for the analysis of the chemical compositions found within microenvironment corrosion solutions, such as those found at crevice and pit corrosion sites. In this study, CE with contactless conductivity detection (CCD) has been used to characterize pitting and crevice corrosion solution chemistries for the first time. By using the capillary electrophoresis with contactless conductivity detection (CE-CCD) system, direct and simultaneous detection of seven metal cations (Cu2+, Ni2+, Fe3+, Fe2+, Cr3+, Mn2+, and Al3+) and chloride anions was achieved with a buffer solution of 10 mM 2,6-pyridinedicarboxylic acid and 0.5 mM cetyltrimethylammonium hydroxide at pH 4 using a pre-column complexation method. The detection limits obtained for the metal cations and chloride anions were 100 and 10 ppb, respectively. The CE-CCD methodology has been demonstrated to be a versatile technique capable of speciation and quantifying the ionic species generated within artificial pit (a pencil electrode) and crevice corrosion geometries for carbon steels and nickel-aluminium bronze, thus allowing the evolution of the solution chemistry to be assessed with time and the identification of the key corrosion analyte targets for structural health monitoring.
Tribology - Materials, Surfaces & Interfaces | 2012
L. Wang; Mengyan Nie; J Rumbol
Abstract Silicon nitride as an energy efficient material is replacing conventional steels for new generation engineering components such as bearings, cutting tools, electronics and engine parts in automotive, aerospace and wind industries. Compared with steel bearings, silicon nitride bearings can be operated at much higher temperatures and speeds with >60% weight reduction and up to 80% friction reduction. These are all due to its unique material properties, including high wear and corrosion resistance, low density and heat generation. Current lubrication solutions for hybrid contacts, where silicon nitride balls and steel races are used, are mostly relying on the protection film formed on the metal surfaces. Self-assembled monolayers (SAMs) have been found very useful in modifying surfaces, especially for microelectromechanical system and nanoscale applications, e.g. atomic force microscopy tips, etc. This study aims to investigate the feasibility of forming a SAM protection film on industrial grade bearing material silicon nitride to reduce the friction for the oil lubricated hybrid contacts. Four silanes with different functional head groups, including octadecyltrichlorosilane (OTS), octyltrichlorosilane, chlorodimethyloctadecylsilane and octadecyltrimethoxysilane, were initially investigated to form SAMs on industrial grade silicon nitride surfaces. The effects of concentration and immersion time of the silanes on the formation of SAMs on the silicon nitride surface were evaluated using contact angle measurements. The preliminary results show that the wetting properties of the silicon nitride surface can be effectively modified by the formation of SAMs from the silane solutions. OTS can form an order and compact SAM on the silicon nitride surfaces within 2 min at the concentration of 2··5 mM in decane solution, while the other three alkylsilanes can also effectively modify silicon nitride surfaces given sufficient immersion time, e.g. over 1 h. Tribological tests were subsequently carried out on a ball on disc rig where a steel ball and a silicon nitride disc were used. The effect of the formation of alkylsilane SAMs on the friction between the sliding contacts has been evaluated in two different methods. The first method was to test preformed SAM films under dry conditions, and the second was to premix one of the surfactants with Shell Vitrea ISO 32 mineral base oil and then spray the mixture to the contacts during the ball on disc testing. The test results show that an average of over 40 and 30% friction reduction was achieved for the hybrid contact when lubricated with the base oil mixed with OTS (>2··5 mM) and octadecyltrimethoxysilane (5 mM) respectively compared with that of the sliding contact lubricated by the base oil only. Since OTS may produce corrosive byproducts during SAM formation, octadecyltrimethoxysilane may be a more suitable additive for the hybrid contacts.
Journal of Hazardous Materials | 2015
Yan Zhang; Mengyan Nie; Xiutong Wang; Yukun Zhu; Fuhua Shi; Jianqiang Yu; Baorong Hou
Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution.
RSC Advances | 2017
Simon Watson; Simon Dennington; L. Wang; Mengyan Nie; Steve Hinder; K.R. Stokes
A greener lubrication solution for the steel–silicon nitride hybrid contact is proposed. The utilisation of surface-initiated (SI) activators-regenerated-by-electron-transfer (ARGET) atom-transfer radical polymerisation (ATRP) is employed to produce an oleophilic polymer brush which is based on methyl methacrylate. The current study presents the synthesis and characterisation of poly methyl methacrylate brushes. X-ray photoelectron spectroscopy, contact angle, gel permeation chromatography and atomic force microscopy were used to characterise the initiators and brushes. The lubricating effects of the polymer brushes under dry and swollen states were elucidated by lateral force microscopy with a steel colloid with a normal load in the nanoscale range. By testing in water and in poly α-olefin (PAO) this work shows that the frictional response of surface initiated polymers is highly dependent on the interaction between polymer brushes and fluid.
Procedia CIRP | 2013
Mengyan Nie; L. Wang
Journal of Materials Science | 2014
Mengyan Nie; Chuan Ting Wang; Minghong Qu; Nong Gao; J.A. Wharton; Terence G. Langdon