Mengyuan Ye
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mengyuan Ye.
Optics Letters | 2014
Mengyuan Ye; Yu Yu; Jinghui Zou; Weili Yang; Xinliang Zhang
A compact silicon-on-insulator device used for conversions between polarization division multiplexing (PDM) and mode division multiplexing (MDM) signals is proposed and experimentally demonstrated by utilizing a structure combining the improved two-dimensional grating coupler and two-mode multiplexer. The detailed design of the proposed device is presented and the results show the extinction ratio of 16 and 20 dB for X- and Y-pol input, respectively. The processing of 40 Gb/s signal is achieved within the C-band with good performance. The proposed converter is capable of handling multiple wavelengths in wavelength division multiplexing (WDM) networks, enabling the conversions between WDM-PDM and WDM-MDM, which is promising to further increase the throughput at the network interface.
Scientific Reports | 2016
Yuchan Luo; Yu Yu; Mengyuan Ye; Chunlei Sun; Xinliang Zhang
A dual-mode 3 dB power coupler based on silicon-on-insulator platform for mode division multiplexing system is proposed and demonstrated. The device, which consists of a tapered directional coupler and two output bend waveguides, has a 50:50 coupling ratio around the wavelength of 1550 nm for both fundamental and first order transverse magnetic (TM0 and TM1) modes. Based on asymmetrical tapered structure, a short common coupling length of ~15.2 μm for both modes is realized by optimizing the width of the tapered waveguide. The measured insertion loss for both modes is less than 0.7 dB. The crosstalks are about −14.3 dB for TM0 mode and −18.1 dB for TM1 mode.
Optics Express | 2016
Mengyuan Ye; Yu Yu; Chunlei Sun; Xinliang Zhang
Data exchange is an important function for flexible optical network, and it has been extensively investigated for the time and wavelength domains. The mode division multiplexing (MDM) has been proposed to further increase the transmission capacity by carrying information on different modes with only single wavelength carrier. We propose and experimentally demonstrate a novel on-chip data exchange circuit for the MDM signals by utilizing two micro-ring resonator (MRR) based mode converters. For demonstration, single and four wavelengths non-return-to-zero on-off-keying (NRZ-OOK) signals at 10 Gb/s carried on different modes are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show reasonable power penalties. The proposed circuit can be potentially used in advanced and flexible MDM optical networks.
Optics Express | 2015
Mengyuan Ye; Yu Yu; Guanyu Chen; Yuchan Luo; Xinliang Zhang
We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.
Optics Express | 2015
Weili Yang; Yu Yu; Mengyuan Ye; Guanyu Chen; Chi Zhang; Xinliang Zhang
The polarization-division multiplexing (PDM) technology is a practical method to double the transmission capacity, and the corresponding phase regeneration (PR) for PDM signals is meaningful and necessary to extend the transmission distance and increase the transparency for the phase-encoded PDM system. Those reported PDM PR schemes either utilized polarization-diversity technique or required special PDM format. In order to overcome these issues, the PR for the PDM phase-modulated signals is proposed and theoretically demonstrated in this paper, based on the vector dual-pump nondegenerate phase sensitive amplification (PSA). The theoretical model is established and the detailed characteristics are investigated to optimize the PR performance. Results show an obvious phase squeezing for the degraded 80 Gbit/s PDM differential phase-shift keying (DPSK) signals, and the error vector magnitude (EVM) of the regenerated signals on dual polarization states can be improved from 22.58% and 21.39% to 4.57% and 4.63%, respectively. Furthermore, the applicability of the proposed scheme for PDM quaternary-phase shift keying (QPSK) signals is investigated. The proposed scheme can be useful and promising in current PDM based coherent fiber-optic communication.
Optics Express | 2014
Jinghui Zou; Yu Yu; Weili Yang; Zhao Wu; Mengyuan Ye; Guanyu Chen; Lei Liu; Shupeng Deng; Xinliang Zhang
We propose and fabricate an SOI based polarization diversity scheme consisting of two 2D grating couplers and a micro ring resonator. Based on this scheme, all-optical polarization insensitive clock recovery has been demonstrated successfully.
Optics Express | 2013
Yaguang Qin; Yu Yu; Jinghui Zou; Mengyuan Ye; Lei Xiang; Xinliang Zhang
We propose and fabricate a novel circuit that combines two two-dimensional (2D) grating couplers and a microring resonator (MRR). According to the polarization states, one 2D grating coupler first splits the input signals into two orthogonal paths, which co-propagate in the loop and share a common MRR, and then the two paths are combined together by the other 2D grating coupler. The proposed circuit is polarization insensitive and can be used as a polarization insensitive filter. For demonstration, the wavelength division and polarization division multiplexing (WDM-PDM) non return-to-zero differential-phase-shift-keying (NRZ-DPSK) signals can be demodulated successfully. The bit error ratio measurements show an error free operation, reflecting the good performance and the practicability.
Optics Express | 2015
Jinghui Zou; Yu Yu; Mengyuan Ye; Lei Liu; Shupeng Deng; Xinliang Zhang
We theoretically propose a silicon nitride (Si(3)N(4)) grating coupler (GC) with both ultrahigh efficiency and simplified fabrication processes. Instead of using a bottom distributed Bragg reflector (DBR) or metal reflector, a bottom Si grating reflector (GR) with comparable reflectivity is utilized to improve the coupling efficiency. The fully etched Si GR is designed based on an industrially standard silicon-on-insulator (SOI) wafer with 220 nm top Si layer. By properly adjusting the trench width and period length of the Si GR, a high reflectivity over 90% is obtained. The Si(3)N(4) GC is optimized based on a common 400 nm Si(3)N(4) layer sitting on the Si GR with a SiO(2) separation layer. With an appropriate distance between the Si(3)N(4) GC and bottom Si GR, a low coupling loss of -1.47 dB is theoretically obtained using uniform GC structure. A further record ultralow loss of -0.88 dB is predicted by apodizing the Si(3)N(4) GC. The specific fabrication processes and tolerance are also investigated. Compared with DBR, the bottom Si GR can be easily fabricated by single step of patterning and etching, simplifying the fabrication processes.
IEEE Photonics Technology Letters | 2015
Yu Yu; Mengyuan Ye; Songnian Fu
An on-chip polarization controlled mode converter compatible with wavelength division multiplexing (WDM) operation is proposed and experimentally demonstrated. The proposed chip consists of a polarization diversity structure and microring resonator-based mode converter. By selecting either horizontal or vertical linear polarization at input single-mode fiber, the input signals can be either converted to LP11 mode or maintained LP01 mode in output few-mode fiber over the C-band. For demonstration, four WDM channels with 40-Gb/s ON-OFF-keying modulation are successfully processed, with an average power penalties of 1.8 and 2.8 dB for two orthogonal linear polarization inputs, respectively. The proposed circuit is promising to process future multidimensional multiplexing signal.
Optics Letters | 2014
Jinghui Zou; Yu Yu; Mengyuan Ye; Lei Liu; Shupeng Deng; Xiaogeng Xu; Xinliang Zhang
We present an efficient segmented-stepwise method to design a short and low-loss mode-size converter. A silicon-on-insulator platform-based converter with 20 μm length and 95.2% conversion efficiency is acquired by taking only 10 optimization generations using 2D-FDTD method. A 3D-FDTD simulation is performed to verify the calculated results, returning an efficiency of 92.1%. The proposed device can be used to connect a 12-μm-wide waveguide and a 0.5-μm-wide single-mode waveguide, with comparable performance of a regular scheme using 150-μm-long linear taper. For demonstration, the converter was fabricated by electron-beam-lithography and inductively-coupled-plasma etching. A conversion loss of -0.62±0.02 dB at 1550 nm was experimentally measured.