Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mengyue Hu is active.

Publication


Featured researches published by Mengyue Hu.


Journal of Endocrinology | 2013

Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides

Can Liu; Mian Zhang; Mengyue Hu; Haifang Guo; Jia Li; Yunli Yu; Shi Jin; Xinting Wang; Li Liu; Xiaodong Liu

Panax ginseng is one of the most popular herbal remedies. Ginsenosides, major bioactive constituents in P. ginseng, have shown good antidiabetic action, but the precise mechanism was not fully understood. Glucagon-like peptide-1 (GLP1) is considered to be an important incretin that can regulate glucose homeostasis in the gastrointestinal tract after meals. The aim of this study was to investigate whether ginseng total saponins (GTS) exerts its antidiabetic effects via modulating GLP1 release. Ginsenoside Rb1 (Rb1), the most abundant constituent in GTS, was selected to further explore the underlying mechanisms in cultured NCI-H716 cells. Diabetic rats were developed by a combination of high-fat diet and low-dose streptozotocin injection. The diabetic rats orally received GTS (150 or 300 mg/kg) daily for 4 weeks. It was found that GTS treatment significantly ameliorated hyperglycemia and dyslipidemia, accompanied by a significant increase in glucose-induced GLP1 secretion and upregulation of proglucagon gene expression. Data from NCI-H716 cells showed that both GTS and Rb1 promoted GLP1 secretion. It was observed that Rb1 increased the ratio of intracellular ATP to ADP concentration and intracellular Ca2+ concentration. The metabolic inhibitor azide (3 mM), the KATP channel opener diazoxide (340 μM), and the Ca2+ channel blocker nifedipine (20 μM) significantly reversed Rb1-mediated GLP1 secretion. All these results drew a conclusion that ginsenosides stimulated GLP1 secretion both in vivo and in vitro. The antidiabetic effects of ginsenosides may be a result of enhanced GLP1 secretion.


Metabolism-clinical and Experimental | 2014

Association of GLP-1 secretion with anti-hyperlipidemic effect of ginsenosides in high-fat diet fed rats

Can Liu; Mengyue Hu; Mian Zhang; Feng Li; Jia Li; Ji Zhang; Ying Li; Haifang Guo; Ping Xu; Li Liu; Xiaodong Liu

OBJECTIVE Ginsenosides, major bioactive constituents in Panax ginseng, have been shown to exert anti-hyperlipidemia effects. However, the underlying mechanism was not well-elucidated due to the low bioavailability of ginsenosides. Glucagon-like peptide-1 (GLP-1) was considered to be a critical regulator of energy homeostasis. Our previous studies have showed that ginseng total saponins (GTS) exhibited antidiabetic effects partly via modulating GLP-1 release. The aim of this study was to investigate the potential role of GLP-1 in anti-hyperlipidemia effect of GTS in rats fed with high-fat diet. MATERIAL AND METHODS Male Sprague-Dawley rats were fed with normal diet (CON) or high-fat diet (HFD) for 4 weeks. Then, the HFD rats orally received vehicle (HFD), 150 mg/kg/day (HFD-GL) and 300 mg/kg/day of GTS (HFD-GH) for another 4 weeks, respectively. RESULTS Four-week GTS treatment significantly ameliorated hyperlipidemia, decreased body fat, liver weight and improved insulin resistance. It was found that high-dose GTS treatment increased portal GLP-1 level induced by glucose loading, accompanied by increased intestinal GLP-1 content, L-cell number and prohormone convertase 3 mRNA expression. Data from NCI-H716 cells showed that both GTS and ginsenoside Rb1 significantly increased GLP-1 secretion as well as proglucagon mRNA level in NCI-H716 cells supplemented with 10% HFD-rat serum. CONCLUSIONS Hyperlipidemia and insulin resistance were attenuated effectively in response to GTS treatment. These improvements may be associated with the increased secretion of GLP-1.


Journal of Pharmaceutical Sciences | 2013

A Mechanistic Physiologically Based Pharmacokinetic-Enzyme Turnover Model Involving both Intestine and Liver to Predict CYP3A Induction-Mediated Drug–Drug Interactions

Haifang Guo; Can Liu; Jia Li; Mian Zhang; Mengyue Hu; Ping Xu; Li Liu; Xiaodong Liu

Cytochrome P450 (CYP) 3A induction-mediated drug-drug interaction (DDI) is one of the major concerns in drug development and clinical practice. The aim of the present study was to develop a novel mechanistic physiologically based pharmacokinetic (PBPK)-enzyme turnover model involving both intestinal and hepatic CYP3A induction to quantitatively predict magnitude of CYP3A induction-mediated DDIs from in vitro data. The contribution of intestinal P-glycoprotein (P-gp) was also incorporated into the PBPK model. First, the pharmacokinetic profiles of three inducers and 14 CYP3A substrates were predicted successfully using the developed model, with the predicted area under the plasma concentration-time curve (AUC) [area under the plasma concentration-time curve] and the peak concentration (Cmax ) [the peak concentration] in accordance with reported values. The model was further applied to predict DDIs between the three inducers and 14 CYP3A substrates. Results showed that predicted AUC and Cmax ratios in the presence and absence of inducer were within twofold of observed values for 17 (74%) of the 23 DDI studies, and for 14 (82%) of the 17 DDI studies, respectively. All the results gave us a conclusion that the developed mechanistic PBPK-enzyme turnover model showed great advantages on quantitative prediction of CYP3A induction-mediated DDIs.


Drug Metabolism and Disposition | 2015

Combined Contribution of Increased Intestinal Permeability and Inhibited Deglycosylation of Ginsenoside Rb1 in the Intestinal Tract to the Enhancement of Ginsenoside Rb1 Exposure in Diabetic Rats after Oral Administration.

Can Liu; Mengyue Hu; Haifang Guo; Mian Zhang; Ji Zhang; Feng Li; Zeyu Zhong; Yang Chen; Ying Li; Ping Xu; Jia Li; Li Liu; Xiaodong Liu

Panax ginseng is becoming a promising antidiabetic herbal medication. As the main active constituents of Panax ginseng, ginsenosides are well known, poorly absorbed chemicals. However, the pharmacokinetic behavior of ginsenosides under diabetic conditions is not fully understood. This study aimed to explore the alterations and potential mechanisms of pharmacokinetic behavior of ginsenoside Rb1 in diabetic rats compared with normal rats and rats fed a high-fat diet. Systemic exposure (area under the concentration-time curve extrapolated from zero to infinity) was significantly increased in diabetic rats after oral administration of Rb1. Oral bioavailability of Rb1 was significantly higher in diabetic rats (2.25%) compared with normal rats (0.90%) and rats fed a high-fat diet (0.78%). Further studies revealed that increased Rb1 exposure in diabetic rats may be mainly attributed to increased Rb1 absorption via the intestine and inhibited Rb1 deglycosylation by the intestinal microflora. Neither metabolic enzymes nor drug transporters displayed appreciable effects on Rb1 disposition. The transport of paracellular markers (fluorescein sodium and fluorescein isothiocyanate-dextran of 4 kDa) as well as Rb1 itself across the Caco-2 monolayer cultured with diabetic serum was promoted, demonstrating that increased paracellular permeability of the Caco-2 monolayer may benefit intestinal Rb1 absorption. In addition, Rb1 exposure was decreased in diabetic rats after Rb1 intravenous administration, which may result from increased Rb1 urinary excretion. In conclusion, Rb1 oral exposure was significantly increased under diabetic conditions, which is of positive significance to clinical treatment. The potential mechanism may be associated with the combined contribution of increased gut permeability and inhibited deglycosylation of ginsenoside Rb1 by intestinal microflora.


Acta Pharmacologica Sinica | 2014

Co-administration of paroxetine and pravastatin causes deregulation of glucose homeostasis in diabetic rats via enhanced paroxetine exposure

Feng Li; Mian Zhang; Dan Xu; Can Liu; Zeyu Zhong; Ling-ling Jia; Mengyue Hu; Yang Yang; Li Liu; Xiaodong Liu

Aim:Clinical evidence shows that co-administration of pravastatin and paroxetine deregulates glucose homeostasis in diabetic patients. The aim of this study was to verify this phenomenon in diabetic rats and to elucidate the underlying mechanisms.Methods:Diabetes mellitus was induced in male SD rats by a high-fat diet combined with a low-dose streptozotocin injection. The rats were orally administered paroxetine (10 mg/kg) and pravastatin (10 mg/d) or both the drugs daily for 28 d. The pharmacokinetics of paroxetine and pravastatin were examined on d 1 and d 28. Biochemical parameters including serum insulin, glucose and lipids were monitored during the treatments. An insulin-secreting cell line (INS-1) was used for measuring insulin secretion.Results:In diabetic rats, co-administration of paroxetine and pravastatin markedly increased the concentrations of both the drugs compared with administration of each drug alone. Furthermore, co-administration severely impaired glucose homeostasis in diabetic rats, as demonstrated by significantly increased serum glucose level, decreased serum and pancreatic insulin levels, and decreased pancreatic Insulin-2 mRNA and tryptophan hydroxylase-1 (Tph-1) mRNA levels. Treatment of INS-1 cells with paroxetine (5 and 10 μmol/L) significantly inhibited insulin secretion, decreased the intracellular insulin, 5-HT, Insulin-2 mRNA and Tph-1 mRNA levels. Treatment of the cells with pravastatin (10 μmol/L) significantly stimulated insulin secretion, which was weakened by co-treatment with paroxetine.Conclusion:Paroxetine inhibits insulin secretion at least via decreasing intracellular 5-HT and insulin biosynthesis. The deregulation of glucose homeostasis by co-administration of paroxetine and pravastatin in diabetic rats can be attributed to enhanced paroxetine exposure.


Acta Pharmacologica Sinica | 2014

Decreased exposure of simvastatin and simvastatin acid in a rat model of type 2 diabetes

Dan Xu; Feng Li; Mian Zhang; Ji Zhang; Can Liu; Mengyue Hu; Zeyu Zhong; Ling-ling Jia; Dawei Wang; Jie Wu; Li Liu; Xiaodong Liu

Aim:Simvastatin is frequently administered to diabetic patients with hypercholesterolemia. The aim of the study was to investigate the pharmacokinetics of simvastatin and its hydrolysate simvastatin acid in a rat model of type 2 diabetes.Methods:Diabetes was induced in 4-week-old rats by a treatment of high-fat diet combined with streptozotocin. After the rats received a single dose of simvastatin (20 mg/kg, po, or 2 mg/kg, iv), the plasma concentrations of simvastatin and simvastatin acid were determined. Simvastatin metabolism and cytochrome P4503A (Cyp3a) activity were assessed in hepatic microsomes, and its uptake was studied in freshly isolated hepatocytes. The expression of Cyp3a1, organic anion transporting polypeptide 2 (Oatp2), multidrug resistance-associated protein 2 (Mrp2) and breast cancer resistance protein (Bcrp) in livers was measured using qRT-PCR.Results:After oral or intravenous administration, the plasma concentrations and areas under concentrations of simvastatin and simvastatin acid were markedly decreased in diabetic rats. Both simvastatin metabolism and Cyp3a activity were markedly increased in hepatocytes of diabetic rats, accompanied by increased expression of hepatic Cyp3a1 mRNA. Furthermore, the uptake of simvastatin by hepatocytes of diabetic rats was markedly increased, which was associated with increased expression of the influx transporter Oatp2, and decreased expression of the efflux transporters Mrp2 and Bcrp.Conclusion:Diabetes enhances the metabolism of simvastatin and simvastatin acid in rats via up-regulating hepatic Cyp3a activity and expression and increasing hepatic uptake.


Journal of Pharmacological Sciences | 2015

High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

Mian Zhang; Can Liu; Mengyue Hu; Ji Zhang; Ping Xu; Feng Li; Zeyu Zhong; Li Liu; Xiaodong Liu

Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs) and alcohol dehydrogenases (ADHs), further converted to retinoic acid by retinal dehydrogenases (RALDHs). The aim of this study was to investigate whether high-fat diet (HFD) induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.


Toxicology and Applied Pharmacology | 2013

Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

Yunli Yu; Xinting Wang; Can Liu; Dan Yao; Mengyue Hu; Jia Li; Nan Hu; Li Liu; Xiaodong Liu

Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K(ATP) channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia.


Xenobiotica | 2016

Decreased exposure of atorvastatin in diabetic rats partly due to induction of hepatic Cyp3a and Oatp2.

Nan Shu; Mengyue Hu; Can Liu; Mian Zhang; Zhaoli Ling; Ji Zhang; Ping Xu; Zeyu Zhong; Yang Chen; Li Liu; Xiaodong Liu

Abstract 1. Atorvastatin is frequently prescribed for lowering blood cholesterol and for prevention of events associated with cardiovascular disease. The aim of this study was to investigate the pharmacokinetics of atorvastatin in diabetic rats. 2. Diabetes was induced in rats by combination of high-fat diet and low-dose streptozotocin (35 mg/kg). Plasma concentrations of atorvastatin following oral (10 mg/kg) and intravenous (2 mg/kg) administrations to rats were measured by LC-MS. Metabolism and uptake of atorvastatin in primary hepatocytes of experimental rats were assessed. Protein expressions and activities of hepatic Cyp3a and Oatp2 were further investigated. 3. Clearances of atorvastatin in diabetic rats following oral and intravenous administrations were remarkably increased, leading to marked decreases in area-under-the-plasma concentration–time curve (AUC). The estimated oral and systematic clearances of atorvastatin in diabetic rats were 4.5-fold and 2.0-fold of control rats, respectively. Metabolism and uptake of atorvastatin in primary hepatocytes isolated from diabetic rats were significantly increased, which were consistent with the up-regulated protein expressions and activities of hepatic Cyp3a and Oatp2. 4. All these results demonstrated that the plasma exposure of atorvastatin was significantly decreased in diabetic rats, which was partly due to the up-regulated activities and expressions of both hepatic Cyp3a and Oatp2.


Scientific Reports | 2016

The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1

Nan Shu; Mengyue Hu; Zhaoli Ling; Peihua Liu; Fan Wang; Ping Xu; Zeyu Zhong; Binbin Sun; Mian Zhang; Feng Li; Qiushi Xie; Xiaodong Liu; Li Liu

Liver injury is a common adverse effect of atorvastatin. This study aimed to investigate atorvastatin-induced hepatotoxicity in diabetic rats induced by high-fat diet combined with streptozotocin. The results showed that 40 mg/kg atorvastatin was lethal to diabetic rats, whose mean survival time was 6.2 days. Severe liver injury also occurred in diabetic rats treated with 10 mg/kg and 20 mg/kg atorvastatin. The in vitro results indicated that atorvastatin cytotoxicity in hepatocytes of diabetic rats was more severe than normal and high-fat diet feeding rats. Expressions and activities of hepatic Cyp3a and SLCO1B1 were increased in diabetic rats, which were highly correlated with hepatotoxicity. Antioxidants (glutathione and N-Acetylcysteine), Cyp3a inhibitor ketoconazole and SLCO1B1 inhibitor gemfibrozil suppressed cytotoxicity and ROS formation in primary hepatocytes of diabetic rats. In HepG2 cells, up-regulations of CYP3A4 and SLCO1B1 potentiated hepatotoxicity and ROS generation, whereas knockdowns of CYP3A4 and SLCO1B1 as well as CYP3A4/SLCO1B1 inhibitions showed the opposite effects. Phenobarbital pretreatment was used to induce hepatic Cyp3a and SLCO1B1 in rats. Phenobarbital aggravated atorvastatin-induced hepatotoxicity, while decreased plasma exposure of atorvastatin. All these findings demonstrated that the upregulations of hepatic Cyp3a and SLCO1B1 in diabetic rats potentiated atorvastatin-induced hepatotoxicity via increasing ROS formation.

Collaboration


Dive into the Mengyue Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Li

China Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Ji Zhang

China Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Can Liu

China Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge