Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Menno P. Gerkema is active.

Publication


Featured researches published by Menno P. Gerkema.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2013

The nocturnal bottleneck and the evolution of activity patterns in mammals

Menno P. Gerkema; Wayne L. Davies; Russell G. Foster; Michael Menaker; Roelof A. Hut

In 1942, Walls described the concept of a ‘nocturnal bottleneck’ in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail.


Current Biology | 2008

Circadian Time-Place Learning in Mice Depends on Cry Genes

Eddy A. Van der Zee; Robbert Havekes; R. Paulien Barf; Roelof A. Hut; Ingrid M. Nijholt; Edwin H. Jacobs; Menno P. Gerkema

Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2013

Animal activity around the clock with no overt circadian rhythms: Patterns, mechanisms and adaptive value

Guy Bloch; Brian M. Barnes; Menno P. Gerkema; Barbara Helm

Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles.


Brain Research | 1999

Severe loss of vasopressin-immunoreactive cells in the suprachiasmatic nucleus of aging voles coincides with reduced circadian organization of running wheel activity

van der Eddy Zee; Koen Jansen; Menno P. Gerkema

Aging leads to a decrease in circadian organization of behavior. Whether this general observation is related to the finding that in older subjects the arginine-vasopressin (AVP) system in the suprachiasmatic nucleus (SCN) has deteriorated is an unsolved question. Here we assessed circadian organization of running wheel behavior and numbers of AVP cells in the SCN of old voles (n=12, 11. 5 months of age) and compared the results with data from young voles (n=16, 4.5 months of age). A third of the young voles, but three-quarter of the old voles lost circadian rhythmicity. Analysis of daily onset to onset periodicity of running wheel activity at the age of 5 and 10 months in individual voles revealed a significant loss of precision of circadian rhythmicity at the higher age. The number of AVP cells in the SCN of old voles decreased substantially, over 78% compared to young voles in general. AVP cell numbers, however, cannot be directly correlated with the state of rhythmicity in old voles; in one of the three circadian rhythmic old voles the SCN contained the least AVP cells. This study does not support the idea of a causal relationship between aging induced reduction in AVP cells in the SCN and the presence of circadian rhythmicity in behavior.


The Journal of Experimental Biology | 2011

Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis): a test of the heat dissipation limit theory

Mirre J. P. Simons; Inonge Reimert; Vincent van der Vinne; Catherine Hambly; Lobke M. Vaanholt; John R. Speakman; Menno P. Gerkema

SUMMARY The heat dissipation limit theory suggests that heat generated during metabolism limits energy intake and, thus, reproductive output. Experiments in laboratory strains of mice and rats, and also domestic livestock generally support this theory. Selection for many generations in the laboratory and in livestock has increased litter size or productivity in these animals. To test the wider validity of the heat dissipation limit theory, we studied common voles (Microtus arvalis), which have small litter sizes by comparison with mice and rats, and regular addition of wild-caught individuals of this species to our laboratory colony ensures a natural genetic background. A crossover design of ambient temperatures (21 and 30°C) during pregnancy and lactation was used. High ambient temperature during lactation decreased milk production, slowing pup growth. The effect on pup growth was amplified when ambient temperature was also high during pregnancy. Shaving fur off dams at 30°C resulted in faster growth of pups; however, no significant increase in food intake and or milk production was detected. With increasing litter size (natural and enlarged), asymptotic food intake during lactation levelled off in the largest litters at both 21 and 30°C. Interestingly, the effects of lactation temperature on pup growth where also observed at smaller litter sizes. This suggests that vole dams trade-off costs associated with hyperthermia during lactation with the yield from investment in pup growth. Moreover, pup survival was higher at 30°C, despite lower growth, probably owing to thermoregulatory benefits. It remains to be seen how the balance is established between the negative effect of high ambient temperature on maternal milk production and pup growth (and/or future reproduction of the dam) and the positive effect of high temperatures on pup survival. This balance ultimately determines the effect of different ambient temperatures on reproductive success.


Frontiers in Molecular Neuroscience | 2013

Circadian clocks and memory: Time-place learning

Cornelis K. Mulder; Menno P. Gerkema; E.A. Van der Zee

Time-Place learning (TPL) refers to the ability of animals to remember important events that vary in both time and place. This ability is thought to be functional to optimize resource localization and predator avoidance in a circadian changing environment. Various studies have indicated that animals use their circadian system for TPL. However, not much is known about this specific role of the circadian system in cognition. This review aims to put TPL in a broader context and to provide an overview of historical background, functional aspects, and future perspectives of TPL. Recent advances have increased our knowledge on establishing TPL in a laboratory setting, leading to the development of a behavioral paradigm demonstrating the circadian nature of TPL in mice. This has enabled the investigation of circadian clock components on a functional behavioral level. Circadian TPL (cTPL) was found to be Cry clock gene dependent, confirming the essential role of Cry genes in circadian rhythms. In contrast, preliminary results have shown that cTPL is independent of Per genes. Circadian system decline with aging predicts that cTPL is age sensitive, potentially qualifying TPL as a functional model for episodic memory and aging. The underlying neurobiological mechanism of TPL awaits further examination. Here we discuss some putative mechanisms.


Neuroreport | 2000

Being circadian or not: vasopressin release in cultured SCN mirrors behavior in adult voles

Koen Jansen; Eddy A. Van der Zee; Menno P. Gerkema

We studied vasopressin (AVP) release patterns from organotypic suprachiasmatic nucleus (SCN) cultures obtained from circadian rhythmic and non-rhythmic voles. All eight SCN cultures made from non-rhythmic voles did not produce any circadian pattern in AVP release, while five out of six SCN cultures of rhythmic voles produced significant (circadian) peak values. The total amount of AVP released was 2-fold higher in SCN cultures from rhythmic vole. These data confirm our previously formulated AVP release deficit hypothesis for non-rhythmic voles, and suggest that AVP in the vole SCN plays an important role in mediating output of its circadian clock, regulating circadian organization of locomotor behavior.


Chronobiology International | 2000

PHOTIC ENTRAINMENT OF CIRCADIAN ACTIVITY PATTERNS IN THE TROPICAL LABRID FISH HALICHOERES CHRYSUS

Menno P. Gerkema; John J. Videler; J de Wiljes; H van Lavieren; H Gerritsen; M Karel

Yellow wrasses (Halichoeres chrysus) show clear daily activity patterns. The fish hide in the substrate at (subjective) night, during the distinct rest phase. Initial entrainment in a 12h:12h light-dark (12:12 LD) cycle (mean period 24.02h, SD 0.27h, n = 16 was followed by a free run (mean period 24.42h, SD 1.33h) after transition into constant dim light conditions. Light pulses of a comparable intensity as used in the light part of the LD cycles did not result in significant phase shifts of the free-running rhythm in constant darkness. Application of much brighter 3h light pulses resulted in a phase-response curve (PRC) for a fish species, with pronounced phase advances during late subjective night. The PRCs differed from those mainly obtained in other vertebrate taxa by the absence of significant phase delays in the early subjective night. At that circadian phase, significant tonic effects of the light pulses caused a shortening of the circadian period length. Entrainment to skeleton photoperiods of 1:11 LD was observed in five of six wrasses exposed, also after a 3h phase advance of this LD cycle. Subsequently, a 1:11.25 LD cycle resulted in entrainment in four of the six fish. It is suggested that the expression of the circadian system in fish can be interpreted as a functional response to a weak natural zeitgeber, as present in the marine environment. This response allows photic entrainment as described here in the yellow wrasse. (Chronobiology International, 17(5), 613–622, 2000)


General and Comparative Endocrinology | 2012

Strong pituitary and hypothalamic responses to photoperiod but not to 6-methoxy-2-benzoxazolinone in female common voles (Microtus arvalis)

Elzbieta Krol; Alex Douglas; Hugues Dardente; Mike J. Birnie; Vincent van der Vinne; Willem G. Eijer; Menno P. Gerkema; David G. Hazlerigg; Roelof A. Hut

The annual cycle of changing day length (photoperiod) is widely used by animals to synchronise their biology to environmental seasonality. In mammals, melatonin is the key hormonal relay for the photoperiodic message, governing thyroid-stimulating hormone (TSH) production in the pars tuberalis (PT) of the pituitary stalk. TSH acts on neighbouring hypothalamic cells known as tanycytes, which in turn control hypothalamic function through effects on thyroid hormone (TH) signalling, mediated by changes in expression of the type II and III deiodinases (Dio2 and Dio3, respectively). Among seasonally breeding rodents, voles of the genus Microtus are notable for a high degree of sensitivity to nutritional and social cues, which act in concert with photoperiod to control reproductive status. In the present study, we investigated whether the TSH/Dio2/Dio3 signalling pathway of female common voles (Microtus arvalis) shows a similar degree of photoperiodic sensitivity to that described in other seasonal mammal species. Additionally, we sought to determine whether the plant metabolite 6-methoxy-2-benzoxazolinone (6-MBOA), described previously as promoting reproductive activation in voles, had any influence on the TSH/Dio2/Dio3 system. Our data demonstrate a high degree of photoperiodic sensitivity in this species, with no observable effects of 6-MBOA on upstream pituitary/hypothalamic gene expression. Further studies are required to characterise how photoperiodic and nutritional signals interact to modulate hypothalamic TH signalling pathways in mammals.


Journal of Neuroscience Research | 2004

Habituation to a test apparatus during associative learning is sufficient to enhance muscarinic acetylcholine receptor-immunoreactivity in rat suprachiasmatic nucleus

Eddy A. Van der Zee; Barbara A.M. Biemans; Menno P. Gerkema; Serge Daan

The suprachiasmatic nucleus (SCN) is engaged in modulation of memory retention after (fear) conditioning, but it is unknown which pathways and neurotransmitter system(s) play a role in this action. Here we examine immunocytochemically whether muscarinic acetylcholine receptors (mAChRs), mediating cholinergic signal transduction in the SCN, are involved. For this purpose, mAChR immunoreactivity (mAChR‐ir) was studied in the SCN after various stages of passive shock avoidance (PSA) and active shock avoidance (ASA) training and, for ASA, at various posttraining time points. mAChR‐ir was significantly enhanced in SCN neurons as a result of the training procedure, and the number of mAChR‐positive glial cells in the SCN increased significantly. The increase in mAChR‐ir as a result of PSA and ASA training was not due to fear conditioning or the number of correct avoidances (in case of ASA training) but rather to behavioral arousal as a consequence of (brief) exposure to a novel environment (the test apparatus). This finding was confirmed by a cage‐change experiment in which the rats were allowed to stay in a novel cage for 15 min or 24 hr. Only the brief exposure to the fresh cage triggered alterations for SCN mAChRs 24 hr later. These results shed new light on a possible function of the cholinergic system in the SCN mediated by mAChRs in relation to modulation of memory processes and demonstrate that behavioral arousal during (the habituation stage of) a learning task is sufficient to alter the mAChR system in the SCN.

Collaboration


Dive into the Menno P. Gerkema's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koen Jansen

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent van der Vinne

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge