Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mercedeh Ghadessi is active.

Publication


Featured researches published by Mercedeh Ghadessi.


Nature Genetics | 2013

The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex

John R. Prensner; Matthew K. Iyer; Anirban Sahu; Irfan A. Asangani; Qi Cao; Lalit Patel; Ismael A. Vergara; Elai Davicioni; Nicholas Erho; Mercedeh Ghadessi; Robert B. Jenkins; Timothy J. Triche; Rohit Malik; Rachel Bedenis; Natalie McGregor; Teng Ma; Wei Chen; Sumin Han; Xiaojun Jing; Xuhong Cao; Xiaoju Wang; Benjamin Chandler; Wei Yan; Javed Siddiqui; Lakshmi P. Kunju; Saravana M. Dhanasekaran; Kenneth J. Pienta; Felix Y. Feng; Arul M. Chinnaiyan

Prostate cancers remain indolent in the majority of individuals but behave aggressively in a minority. The molecular basis for this clinical heterogeneity remains incompletely understood. Here we characterize a long noncoding RNA termed SChLAP1 (second chromosome locus associated with prostate-1; also called LINC00913) that is overexpressed in a subset of prostate cancers. SChLAP1 levels independently predict poor outcomes, including metastasis and prostate cancer–specific mortality. In vitro and in vivo gain-of-function and loss-of-function experiments indicate that SChLAP1 is critical for cancer cell invasiveness and metastasis. Mechanistically, SChLAP1 antagonizes the genome-wide localization and regulatory functions of the SWI/SNF chromatin-modifying complex. These results suggest that SChLAP1 contributes to the development of lethal cancer at least in part by antagonizing the tumor-suppressive functions of the SWI/SNF complex.


PLOS ONE | 2013

Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy

Nicholas Erho; Anamaria Crisan; Ismael A. Vergara; Anirban P. Mitra; Mercedeh Ghadessi; Christine Buerki; Eric J. Bergstralh; Thomas M. Kollmeyer; Stephanie R. Fink; Zaid Haddad; Benedikt Zimmermann; Thomas Sierocinski; Karla V. Ballman; Timothy J. Triche; Peter C. Black; R. Jeffrey Karnes; George G. Klee; Elai Davicioni; Robert B. Jenkins

Purpose Clinicopathologic features and biochemical recurrence are sensitive, but not specific, predictors of metastatic disease and lethal prostate cancer. We hypothesize that a genomic expression signature detected in the primary tumor represents true biological potential of aggressive disease and provides improved prediction of early prostate cancer metastasis. Methods A nested case-control design was used to select 639 patients from the Mayo Clinic tumor registry who underwent radical prostatectomy between 1987 and 2001. A genomic classifier (GC) was developed by modeling differential RNA expression using 1.4 million feature high-density expression arrays of men enriched for rising PSA after prostatectomy, including 213 who experienced early clinical metastasis after biochemical recurrence. A training set was used to develop a random forest classifier of 22 markers to predict for cases - men with early clinical metastasis after rising PSA. Performance of GC was compared to prognostic factors such as Gleason score and previous gene expression signatures in a withheld validation set. Results Expression profiles were generated from 545 unique patient samples, with median follow-up of 16.9 years. GC achieved an area under the receiver operating characteristic curve of 0.75 (0.67–0.83) in validation, outperforming clinical variables and gene signatures. GC was the only significant prognostic factor in multivariable analyses. Within Gleason score groups, cases with high GC scores experienced earlier death from prostate cancer and reduced overall survival. The markers in the classifier were found to be associated with a number of key biological processes in prostate cancer metastatic disease progression. Conclusion A genomic classifier was developed and validated in a large patient cohort enriched with prostate cancer metastasis patients and a rising PSA that went on to experience metastatic disease. This early metastasis prediction model based on genomic expression in the primary tumor may be useful for identification of aggressive prostate cancer.


Nature Communications | 2014

The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer

Dimple Chakravarty; Andrea Sboner; Sujit S. Nair; Eugenia G. Giannopoulou; Ruohan Li; Sven Hennig; Juan Miguel Mosquera; Jonathan Pauwels; Kyung Park; Myriam Kossai; Theresa Y. MacDonald; Jacqueline Fontugne; Nicholas Erho; Ismael A. Vergara; Mercedeh Ghadessi; Elai Davicioni; Robert B. Jenkins; Nallasivam Palanisamy; Zhengming Chen; Shinichi Nakagawa; Tetsuro Hirose; Neil H. Bander; Himisha Beltran; Archa H. Fox; Olivier Elemento; Mark A. Rubin

The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERα) is expressed in prostate cancers, independent of AR status. However, the role of ERα remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERα-specific non-coding transcriptome signature. Among putatively ERα-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical cohorts also revealed that NEAT1 expression is associated with prostate cancer progression. Prostate cancer cells expressing high levels of NEAT1 were recalcitrant to androgen or AR antagonists. Finally, we provide evidence that NEAT1 drives oncogenic growth by altering the epigenetic landscape of target gene promoters to favour transcription.


The Journal of Urology | 2013

Validation of a Genomic Classifier that Predicts Metastasis Following Radical Prostatectomy in an At Risk Patient Population

R. Jeffrey Karnes; Eric J. Bergstralh; Elai Davicioni; Mercedeh Ghadessi; Christine Buerki; Anirban P. Mitra; Anamaria Crisan; Nicholas Erho; Ismael A. Vergara; Lucia L. Lam; Rachel Carlson; Darby J.S. Thompson; Zaid Haddad; Benedikt Zimmermann; Thomas Sierocinski; Timothy J. Triche; Thomas M. Kollmeyer; Karla V. Ballman; Peter C. Black; George G. Klee; Robert B. Jenkins

PURPOSE Patients with locally advanced prostate cancer after radical prostatectomy are candidates for secondary therapy. However, this higher risk population is heterogeneous. Many cases do not metastasize even when conservatively managed. Given the limited specificity of pathological features to predict metastasis, newer risk prediction models are needed. We report a validation study of a genomic classifier that predicts metastasis after radical prostatectomy in a high risk population. MATERIALS AND METHODS A case-cohort design was used to sample 1,010 patients after radical prostatectomy at high risk for recurrence who were treated from 2000 to 2006. Patients had preoperative prostate specific antigen greater than 20 ng/ml, Gleason 8 or greater, pT3b or a Mayo Clinic nomogram score of 10 or greater. Patients with metastasis at diagnosis or any prior treatment for prostate cancer were excluded from analysis. A 20% random sampling created a subcohort that included all patients with metastasis. We generated 22-marker genomic classifier scores for 219 patients with available genomic data. ROC and decision curves, competing risk and weighted regression models were used to assess genomic classifier performance. RESULTS The genomic classifier AUC was 0.79 for predicting 5-year metastasis after radical prostatectomy. Decision curves showed that the genomic classifier net benefit exceeded that of clinical only models. The genomic classifier was the predominant predictor of metastasis on multivariable analysis. The cumulative incidence of metastasis 5 years after radical prostatectomy was 2.4%, 6.0% and 22.5% in patients with low (60%), intermediate (21%) and high (19%) genomic classifier scores, respectively (p<0.001). CONCLUSIONS Results indicate that genomic information from the primary tumor can identify patients with adverse pathological features who are most at risk for metastasis and potentially lethal prostate cancer.


European Urology | 2015

Combined Value of Validated Clinical and Genomic Risk Stratification Tools for Predicting Prostate Cancer Mortality in a High-risk Prostatectomy Cohort

Matthew R. Cooperberg; Elai Davicioni; Anamaria Crisan; Robert B. Jenkins; Mercedeh Ghadessi; R. Jeffrey Karnes

BACKGROUND Risk prediction models that incorporate biomarkers and clinicopathologic variables may be used to improve decision making after radical prostatectomy (RP). We compared two previously validated post-RP classifiers-the Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) and the Decipher genomic classifier (GC)-to predict prostate cancer-specific mortality (CSM) in a contemporary cohort of RP patients. OBJECTIVE To evaluate the combined prognostic ability of CAPRA-S and GC to predict CSM. DESIGN, SETTING, AND PARTICIPANTS A cohort of 1010 patients at high risk of recurrence after RP were treated at the Mayo Clinic between 2000 and 2006. High risk was defined by any of the following: preoperative prostate-specific antigen >20 ng/ml, pathologic Gleason score ≥8, or stage pT3b. A case-cohort random sample identified 225 patients (with cases defined as patients who experienced CSM), among whom CAPRA-S and GC could be determined for 185 patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The scores were evaluated individually and in combination using concordance index (c-index), decision curve analysis, reclassification, cumulative incidence, and Cox regression for the prediction of CSM. RESULTS AND LIMITATIONS Among 185 men, 28 experienced CSM. The c-indices for CAPRA-S and GC were 0.75 (95% confidence interval [CI], 0.55-0.84) and 0.78 (95% CI, 0.68-0.87), respectively. GC showed higher net benefit on decision curve analysis, but a score combining CAPRA-S and GC did not improve the area under the receiver-operating characteristic curve after optimism-adjusted bootstrapping. In 82 patients stratified to high risk based on CAPRA-S score ≥6, GC scores were likewise high risk for 33 patients, among whom 17 had CSM events. GC reclassified the remaining 49 men as low to intermediate risk; among these men, three CSM events were observed. In multivariable analysis, GC and CAPRA-S as continuous variables were independently prognostic of CSM, with hazard ratios (HRs) of 1.81 (p<0.001 per 0.1-unit change in score) and 1.36 (p=0.01 per 1-unit change in score). When categorized into risk groups, the multivariable HR for high CAPRA-S scores (≥6) was 2.36 (p=0.04) and was 11.26 (p<0.001) for high GC scores (≥0.6). For patients with both high GC and high CAPRA-S scores, the cumulative incidence of CSM was 45% at 10 yr. The study is limited by its retrospective design. CONCLUSIONS Both GC and CAPRA-S were significant independent predictors of CSM. GC was shown to reclassify many men stratified to high risk based on CAPRA-S ≥6 alone. Patients with both high GC and high CAPRA-S risk scores were at markedly elevated post-RP risk for lethal prostate cancer. If validated prospectively, these findings suggest that integration of a genomic-clinical classifier may enable better identification of those post-RP patients who should be considered for more aggressive secondary therapies and clinical trials. PATIENT SUMMARY The Cancer of the Prostate Risk Assessment Postsurgical (CAPRA-S) and the Decipher genomic classifier (GC) were significant independent predictors of prostate cancer-specific mortality. These findings suggest that integration of a genomic-clinical classifier may enable better identification of those post-radical prostatectomy patients who should be considered for more aggressive secondary therapies and clinical trials.


International Journal of Radiation Oncology Biology Physics | 2014

Genomic Prostate Cancer Classifier Predicts Biochemical Failure and Metastases in Patients After Postoperative Radiation Therapy

Robert B. Den; Felix Y. Feng; Timothy N. Showalter; Mark V. Mishra; Edouard J. Trabulsi; Leonard G. Gomella; W. Kevin Kelly; Ruth Birbe; Peter McCue; Mercedeh Ghadessi; Kasra Yousefi; Elai Davicioni; Karen E. Knudsen; Adam P. Dicker

Purpose To test the hypothesis that a genomic classifier (GC) would predict biochemical failure (BF) and distant metastasis (DM) in men receiving radiation therapy (RT) after radical prostatectomy (RP). Methods and Materials Among patients who underwent post-RP RT, 139 were identified for pT3 or positive margin, who did not receive neoadjuvant hormones and had paraffin-embedded specimens. Ribonucleic acid was extracted from the highest Gleason grade focus and applied to a high-density-oligonucleotide microarray. Receiver operating characteristic, calibration, cumulative incidence, and Cox regression analyses were performed to assess GC performance for predicting BF and DM after post-RP RT in comparison with clinical nomograms. Results The area under the receiver operating characteristic curve of the Stephenson model was 0.70 for both BF and DM, with addition of GC significantly improving area under the receiver operating characteristic curve to 0.78 and 0.80, respectively. Stratified by GC risk groups, 8-year cumulative incidence was 21%, 48%, and 81% for BF (P<.0001) and for DM was 0, 12%, and 17% (P=.032) for low, intermediate, and high GC, respectively. In multivariable analysis, patients with high GC had a hazard ratio of 8.1 and 14.3 for BF and DM. In patients with intermediate or high GC, those irradiated with undetectable prostate-specific antigen (PSA ≤0.2 ng/mL) had median BF survival of >8 years, compared with <4 years for patients with detectable PSA (>0.2 ng/mL) before initiation of RT. At 8 years, the DM cumulative incidence for patients with high GC and RTwith undetectable PSA was 3%, compared with 23% with detectable PSA (P=.03). No outcome differences were observed for low GC between the treatment groups. Conclusion The GC predicted BF and metastasis after post-RP irradiation. Patients with lower GC risk may benefit from delayed RT, as opposed to those with higher GC; however, this needs prospective validation. Genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.


Prostate Cancer and Prostatic Diseases | 2014

A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy

Ashley E. Ross; Felix Y. Feng; Mercedeh Ghadessi; Nicholas Erho; Anamaria Crisan; Christine Buerki; Debasish Sundi; Anirban P. Mitra; Ismael A. Vergara; Darby J.S. Thompson; Timothy J. Triche; Elai Davicioni; Eric J. Bergstralh; Robert B. Jenkins; R.J. Karnes; Edward M. Schaeffer

Background:Due to their varied outcomes, men with biochemical recurrence (BCR) following radical prostatectomy (RP) present a management dilemma. Here, we evaluate Decipher, a genomic classifier (GC), for its ability to predict metastasis following BCR.Methods:The study population included 85 clinically high-risk patients who developed BCR after RP. Time-dependent receiver operating characteristic (ROC) curves, weighted Cox proportional hazard models and decision curves were used to compare GC scores to Gleason score (GS), PSA doubling time (PSAdT), time to BCR (ttBCR), the Stephenson nomogram and CAPRA-S for predicting metastatic disease progression. All tests were two-sided with a type I error probability of 5%.Results:GC scores stratified men with BCR into those who would or would not develop metastasis (8% of patients with low versus 40% with high scores developed metastasis, P<0.001). The area under the curve for predicting metastasis after BCR was 0.82 (95% CI, 0.76–0.86) for GC, compared to GS 0.64 (0.58–0.70), PSAdT 0.69 (0.61–0.77) and ttBCR 0.52 (0.46–0.59). Decision curve analysis showed that GC scores had a higher overall net benefit compared to models based solely on clinicopathologic features. In multivariable modeling with clinicopathologic variables, GC score was the only significant predictor of metastasis (P=0.003).Conclusions:When compared to clinicopathologic variables, GC better predicted metastatic progression among this cohort of men with BCR following RP. While confirmatory studies are needed, these results suggest that use of GC may allow for better selection of men requiring earlier initiation of treatment at the time of BCR.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is down regulated in aggressive prostate cancers and is prognostic for poor clinical outcome

Paula J. Hurley; Luigi Marchionni; Brian W. Simons; Ashley E. Ross; Sarah B. Peskoe; Rebecca Miller; Nicholas Erho; Ismael A. Vergara; Mercedeh Ghadessi; Zhenhua Huang; Bora Gurel; Ben Ho Park; Elai Davicioni; Robert B. Jenkins; Elizabeth A. Platz; David M. Berman; Edward M. Schaeffer

Prostate cancer is the second leading cause of cancer death among United States men. However, disease aggressiveness is varied, with low-grade disease often being indolent and high-grade cancer accounting for the greatest density of deaths. Outcomes are also disparate among men with high-grade prostate cancer, with upwards of 65% having disease recurrence even after primary treatment. Identification of men at risk for recurrence and elucidation of the molecular processes that drive their disease is paramount, as these men are the most likely to benefit from multimodal therapy. We previously showed that androgen-induced expression profiles in prostate development are reactivated in aggressive prostate cancers. Herein, we report the down-regulation of one such gene, Sparcl1, a secreted protein, acidic and rich in cysteine (SPARC) family matricellular protein, during invasive phases of prostate development and regeneration. We further demonstrate a parallel process in prostate cancer, with decreased expression of SPARCL1 in high-grade/metastatic prostate cancer. Mechanistically, we demonstrate that SPARCL1 loss increases the migratory and invasive properties of prostate cancer cells through Ras homolog gene family, member C (RHOC), a known mediator of metastatic progression. By using models incorporating clinicopathologic parameters to predict prostate cancer recurrence after treatment, we show that SPARCL1 loss is a significant, independent prognostic marker of disease progression. Thus, SPARCL1 is a potent regulator of cell migration/invasion and its loss is independently associated with prostate cancer recurrence.


Journal of the National Cancer Institute | 2014

Discovery and Validation of Novel Expression Signature for Postcystectomy Recurrence in High-Risk Bladder Cancer

Anirban P. Mitra; Lucia L. Lam; Mercedeh Ghadessi; Nicholas Erho; Ismael A. Vergara; Mohammed Alshalalfa; Christine Buerki; Zaid Haddad; Thomas Sierocinski; Timothy J. Triche; Eila C. Skinner; Elai Davicioni; Siamak Daneshmand; Peter C. Black

Background Nearly half of muscle-invasive bladder cancer patients succumb to their disease following cystectomy. Selecting candidates for adjuvant therapy is currently based on clinical parameters with limited predictive power. This study aimed to develop and validate genomic-based signatures that can better identify patients at risk for recurrence than clinical models alone. Methods Transcriptome-wide expression profiles were generated using 1.4 million feature-arrays on archival tumors from 225 patients who underwent radical cystectomy and had muscle-invasive and/or node-positive bladder cancer. Genomic (GC) and clinical (CC) classifiers for predicting recurrence were developed on a discovery set (n = 133). Performances of GC, CC, an independent clinical nomogram (IBCNC), and genomic-clinicopathologic classifiers (G-CC, G-IBCNC) were assessed in the discovery and independent validation (n = 66) sets. GC was further validated on four external datasets (n = 341). Discrimination and prognostic abilities of classifiers were compared using area under receiver-operating characteristic curves (AUCs). All statistical tests were two-sided. Results A 15-feature GC was developed on the discovery set with area under curve (AUC) of 0.77 in the validation set. This was higher than individual clinical variables, IBCNC (AUC = 0.73), and comparable to CC (AUC = 0.78). Performance was improved upon combining GC with clinical nomograms (G-IBCNC, AUC = 0.82; G-CC, AUC = 0.86). G-CC high-risk patients had elevated recurrence probabilities (P < .001), with GC being the best predictor by multivariable analysis (P = .005). Genomic-clinicopathologic classifiers outperformed clinical nomograms by decision curve and reclassification analyses. GC performed the best in validation compared with seven prior signatures. GC markers remained prognostic across four independent datasets. Conclusions The validated genomic-based classifiers outperform clinical models for predicting postcystectomy bladder cancer recurrence. This may be used to better identify patients who need more aggressive management.


European Urology | 2016

Utility of Risk Models in Decision Making After Radical Prostatectomy: Lessons from a Natural History Cohort of Intermediate- and High-Risk Men

Ashley E. Ross; Kasra Yousefi; Elai Davicioni; Mercedeh Ghadessi; Michael H. Johnson; Debasish Sundi; Jeffery J. Tosoian; Misop Han; Elizabeth B. Humphreys; Alan W. Partin; Patrick C. Walsh; Bruce J. Trock; Edward M. Schaeffer

BACKGROUND Current guidelines suggest adjuvant radiation therapy for men with adverse pathologic features (APFs) at radical prostatectomy (RP). We examine at-risk men treated only with RP until the time of metastasis. OBJECTIVE To evaluate whether clinicopathologic risk models can help guide postoperative therapeutic decision making. DESIGN, SETTING, AND PARTICIPANTS Men with National Comprehensive Cancer Network intermediate- or high-risk localized prostate cancer undergoing RP in the prostate-specific antigen (PSA) era were identified (n=3089). Only men with initial undetectable PSA after surgery and who received no therapy prior to metastasis were included. APFs were defined as pT3 disease or positive surgical margins. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Area under the receiver operating characteristic curve (AUC) for time to event data was used to measure the discrimination performance of the risk factors. Cumulative incidence curves were constructed using Fine and Gray competing risks analysis to estimate the risk of biochemical recurrence (BCR) or metastasis, taking censoring and death due to other causes into consideration. RESULTS AND LIMITATIONS Overall, 43% of the cohort (n=1327) had APFs at RP. Median follow-up for censored patients was 5 yr. Cumulative incidence of metastasis was 6% at 10 yr after RP for all patients. Cumulative incidence of metastasis among men with APFs was 7.5% at 10 yr after RP. Among men with BCR, the incidence of metastasis was 38% 5 yr after BCR. At 10 yr after RP, time-dependent AUC for predicting metastasis by Cancer of the Prostate Risk Assessment Postsurgical or Eggener risk models was 0.81 (95% confidence interval [CI], 0.72-0.97) and 0.78 (95% CI, 0.67-0.97) in the APF population, respectively. At 5 yr after BCR, these values were lower (0.58 [95% CI, 0.50-0.66] and 0.70 [95% CI, 0.63-0.76]) among those who developed BCR. Use of risk model cut points could substantially reduce overtreatment while minimally increasing undertreatment (ie, use of an Eggener cut point of 2.5% for treatment of men with APFs would spare 46% from treatment while only allowing for metastatic events in 1% at 10 yr after RP). CONCLUSIONS Use of risk models reduces overtreatment and should be a routine part of patient counseling when considering adjuvant therapy. Risk model performance is significantly reduced among men with BCR. PATIENT SUMMARY Use of current risk models can help guide decision making regarding therapy after surgery and reduce overtreatment.

Collaboration


Dive into the Mercedeh Ghadessi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anamaria Crisan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anirban P. Mitra

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge