Mercedes Barzi
Center for Cell and Gene Therapy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mercedes Barzi.
Toxicological Sciences | 2009
Marcelo Farina; Francisco Campos; Iolanda Vendrell; Jordi Berenguer; Mercedes Barzi; Sebastián Pons; Cristina Suñol
Methylmercury (MeHg) is an environmental neurotoxicant whose molecular mechanisms underlying toxicity remain elusive. Here, we investigated molecular events involved in MeHg-induced neurotoxicity in cultured cerebellar granule cells (CGCs) as well as potential protective strategies for such toxicity. Glutathione peroxidase, isozyme 1 (GPx-1) activity was significantly (p = 0.0017) decreased at 24 h before MeHg-induced neuronal death (day in vitro 4). This event was related to enhanced susceptibilities to hydrogen peroxide or tert-butyl peroxide and increased lipid peroxidation. However, intracellular calcium levels, glutamate uptake, and glutathione levels, as well as glutathione reductase and catalase activities, were not changed by MeHg exposure at this time point. Probucol (PB), a lipid-lowering drug, displayed a long-lasting protective effect against MeHg-induced neurotoxicity. The beneficial effects of PB were correlated with increased GPx-1 activity and decreased lipid peroxidation. The protection afforded by PB was significantly higher when compared to the antioxidants, ascorbic acid and trolox. In vitro studies with the purified GPx-1 proved that MeHg inhibits and PB activates the enzyme activity. Overexpression of GPx-1 prevented MeHg-induced neuronal death. These data indicate that (1) GPx-1 is an important molecular target involved in MeHg-induced neurotoxicity and (2) PB, which increases GPx-1 activity in CGCs, induces enduring protection against such toxicity. The results bring out new insights on the potential therapeutic strategies for poisonings to MeHg and other pathological conditions related to increased production and/or decreased detoxification of peroxides.
Journal of Cell Science | 2010
Mercedes Barzi; Jordi Berenguer; Anghara Menendez; Rubén Álvarez-Rodríguez; Sebastián Pons
Cerebellar granular neuronal precursors (CGNPs) proliferate in response to the mitogenic activity of Sonic hedgehog (Shh), and this proliferation is negatively regulated by activation of cAMP-dependent protein kinase (PKA). In the basal state, the PKA catalytic subunits (C-PKA) are inactive because of their association with the regulatory subunits (R-PKA). As the level of cAMP increases, it binds to R-PKA, displacing and thereby activating the C-PKA. Here we report that, in the presence of Shh, inactive C-PKA accumulates at the cilium base of proliferative CGNPs whereas removal of Shh triggers the activation of PKA at this particular location. Furthermore, we demonstrate that the anchoring of the PKA holoenzyme to the cilium base is mediated by the specific binding of the type II PKA regulatory subunit (RII-PKA) to the A-kinase anchoring proteins (AKAPs). Disruption of the interaction between RII-PKA and AKAPs inhibits Shh activity and, therefore, blocks proliferation of CGNP cultures. Collectively, these results demonstrate that the pool of PKA localized to the cilium base of CGNP plays an essential role in the integration of Shh signal transduction.
Journal of Biological Chemistry | 2007
Rubén Álvarez-Rodríguez; Mercedes Barzi; Jordi Berenguer; Sebastián Pons
Nmyc is a potent regulator of cell cycle in cerebellar granular neuron precursors (CGNPs) and has been proposed to be the main effector of Shh (Sonic hedgehog) proliferative activity. Nmyc ectopic expression is sufficient to promote cell autonomous proliferation and can lead to tumorigenesis. Bone morphogenetic protein 2 (BMP2) antagonizes Shh proliferative effect by promoting cell cycle exit and differentiation in CGNPs. Here we report that BMP2 opposes Shh mitogenic activity by blocking Nmyc expression. We have identified TIEG-1 (KLF10) as the intermediary factor that blocks Nmyc expression through the occupancy of the Sp1 sites present in its promoter. We also demonstrate that TIEG-1 ectopic expression in CGNPs induces cell cycle arrest that can lead to apoptosis but fails to promote differentiation. Moreover, TIEG-1 synergizes with BMP2 activity to terminally differentiate CGNPs and independent differentiator signals such as dibutyryl cAMP and prevents apoptosis in TIEG-1 arrested cells. All together, these data strongly suggest that the BMP2 pathway triggers cell cycle exit and differentiation as two separated but coordinated processes, where TIEG-1 acts as a mediator of the cell cycle arrest.
Journal of Biological Chemistry | 2011
Mercedes Barzi; Dorota Kostrz; Anghara Menendez; Sebastián Pons
Proliferation of cerebellar granular neuronal precursors (CGNPs) is mediated by Sonic Hedgehog (Shh), which activates the Patched and Smoothened (Smo) receptor complex. Although its protein sequence suggests that Smo is a G protein coupled receptor (GPCR), the evidence that this receptor utilizes heterotrimeric G proteins as downstream effectors is controversial. In Drosophila, Gαi is required for Hedgehog (Hh) activity, but the involvement of heterotrimeric G proteins in vertebrate Shh signaling has not yet been established. Here, we show that Shh-induced proliferation of rat CGNPs is enhanced strongly by the expression of the active forms of Gαi/o proteins (Gαi1, Gαi2, Gαi3, and Gαo) but not by members of another class (Gα12) of heterotrimeric G proteins. Additionally, the mRNAs of these different Gαi members display specific expression patterns in the developing cerebellum; only Gαi2 and Gαi3 are substantially expressed in the outer external granular layer, where CGNPs proliferate. Consistent with this, Shh-induced proliferation of CGNPs is reduced significantly by knockdowns of Gαi2 and Gαi3 but not by silencing of other members of the Gαi/o class. Finally, our results demonstrate that Gαi2 and Gαi3 locate to the primary cilium when expressed in CGNP cultures. In summary, we conclude that the proliferative effects of Shh on CGNPs are mediated by the combined activity of Gαi2 and Gαi3 proteins.
Nature Communications | 2016
Francis P. Pankowicz; Mercedes Barzi; Xavier Legras; Leroy Hubert; Tian Mi; Julie A. Tomolonis; Milan Ravishankar; Qin Sun; Diane Yang; Malgorzata Borowiak; Pavel Sumazin; Sarah H. Elsea; Beatrice Bissig-Choisat; Karl-Dimiter Bissig
Many metabolic liver disorders are refractory to drug therapy and require orthotopic liver transplantation. Here we demonstrate a new strategy, which we call metabolic pathway reprogramming, to treat hereditary tyrosinaemia type I in mice; rather than edit the disease-causing gene, we delete a gene in a disease-associated pathway to render the phenotype benign. Using CRISPR/Cas9 in vivo, we convert hepatocytes from tyrosinaemia type I into the benign tyrosinaemia type III by deleting Hpd (hydroxyphenylpyruvate dioxigenase). Edited hepatocytes (Fah−/−/Hpd−/−) display a growth advantage over non-edited hepatocytes (Fah−/−/Hpd+/+) and, in some mice, almost completely replace them within 8 weeks. Hpd excision successfully reroutes tyrosine catabolism, leaving treated mice healthy and asymptomatic. Metabolic pathway reprogramming sidesteps potential difficulties associated with editing a critical disease-causing gene and can be explored as an option for treating other diseases.
Journal of Hepatology | 2016
Beatrice Bissig-Choisat; Claudia Kettlun-Leyton; Xavier Legras; Barry Zorman; Mercedes Barzi; Leon Chen; Mansi D. Amin; Yung Hsin Huang; Robia G. Pautler; Oliver A. Hampton; Masand M. Prakash; Diane Yang; Malgorzata Borowiak; Donna M. Muzny; HarshaVardhan Doddapaneni; Jianhong Hu; Yan Shi; M. Waleed Gaber; M. John Hicks; Patrick A. Thompson; Yiling Lu; Gordon B. Mills; Milton J. Finegold; John A. Goss; D. Williams Parsons; Sanjeev A. Vasudevan; Pavel Sumazin; Dolores Lopez-Terrada; Karl-Dimiter Bissig
BACKGROUND & AIMS Pediatric liver cancer is a rare but serious disease whose incidence is rising, and for which the therapeutic options are limited. Development of more targeted, less toxic therapies is hindered by the lack of an experimental animal model that captures the heterogeneity and metastatic capability of these tumors. METHODS Here we established an orthotopic engraftment technique to model a series of patient-derived tumor xenograft (PDTX) from pediatric liver cancers of all major histologic subtypes: hepatoblastoma, hepatocellular cancer and hepatocellular malignant neoplasm. We utilized standard (immuno) staining methods for histological characterization, RNA sequencing for gene expression profiling and genome sequencing for identification of druggable targets. We also adapted stem cell culturing techniques to derive two new pediatric cancer cell lines from the xenografted mice. RESULTS The patient-derived tumor xenografts recapitulated the histologic, genetic, and biological characteristics-including the metastatic behavior-of the corresponding primary tumors. Furthermore, the gene expression profiles of the two new liver cancer cell lines closely resemble those of the primary tumors. Targeted therapy of PDTX from an aggressive hepatocellular malignant neoplasm with the MEK1 inhibitor trametinib and pan-class I PI3 kinase inhibitor NVP-BKM120 resulted in significant growth inhibition, thus confirming this PDTX model as a valuable tool to study tumor biology and patient-specific therapeutic responses. CONCLUSIONS The novel metastatic xenograft model and the isogenic xenograft-derived cell lines described in this study provide reliable tools for developing mutation- and patient-specific therapies for pediatric liver cancer. LAY SUMMARY Pediatric liver cancer is a rare but serious disease and no experimental animal model currently captures the complexity and metastatic capability of these tumors. We have established a novel animal model using human tumor tissue that recapitulates the genetic and biological characteristics of this cancer. We demonstrate that our patient-derived animal model, as well as two new cell lines, are useful tools for experimental therapies.
Nature Communications | 2017
Mercedes Barzi; Francis P. Pankowicz; Barry Zorman; Xing Liu; Xavier Legras; Diane Yang; Malgorzata Borowiak; Beatrice Bissig-Choisat; Pavel Sumazin; Feng Li; Karl-Dimiter Bissig
Only one out of 10 drugs in development passes clinical trials. Many fail because experimental animal models poorly predict human xenobiotic metabolism. Human liver chimeric mice are a step forward in this regard, as the human hepatocytes in chimeric livers generate human metabolites, but the remaining murine hepatocytes contain an expanded set of P450 cytochromes that form the major class of drug-metabolizing enzymes. We therefore generated a conditional knock-out of the NADPH-P450 oxidoreductase (Por) gene combined with Il2rg− /−/Rag2− /−/Fah− /− (PIRF) mice. Here we show that homozygous PIRF mouse livers are readily repopulated with human hepatocytes, and when the murine Por gene is deleted (<5%), they predominantly use human cytochrome metabolism. When given the anticancer drug gefitinib or the retroviral drug atazanavir, the Por-deleted humanized PIRF mice develop higher levels of the major human metabolites than current models. Humanized, murine Por-deficient PIRF mice can thus predict human drug metabolism and should be useful for preclinical drug development.Human liver chimeric mice are increasingly used for drug testing in preclinical development, but express residual murine p450 cytochromes. Here the authors generate mice lacking the Por gene in the liver, and show that human cytochrome metabolism is used following repopulation with human hepatocytes.
Nature Communications | 2015
Beatrice Bissig-Choisat; Lili Wang; Xavier Legras; Pradip K. Saha; Leon Chen; Peter Bell; Francis P. Pankowicz; Matthew C. Hill; Mercedes Barzi; Claudia Kettlun Leyton; HonChiu Eastwood Leung; Robert L. Kruse; Ryan Himes; John A. Goss; James M. Wilson; Lawrence Chan; William R. Lagor; Karl-Dimiter Bissig
Journal of Hepatology | 2016
F. Pankowicz; Mercedes Barzi; J. Tomolonis; Beatrice Bissig-Choisat; Xavier Legras; M. Ravishankar; Qiang Sun; Malgorzata Borowiak; S.H. Elsea; Pavel Sumazin; Karl-Dimiter Bissig
Journal of Hepatology | 2016
Karl-Dimiter Bissig; Silke Paust; Mercedes Barzi