Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mercedes G. López is active.

Publication


Featured researches published by Mercedes G. López.


British Journal of Nutrition | 2008

Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp.

Judith Urias-Silvas; Patrice D. Cani; Evelyne Delmée; Audrey M. Neyrinck; Mercedes G. López; Nathalie M. Delzenne

Recent data reported that inulin-type fructans extracted from chicory roots regulate appetite and lipid/glucose metabolism, namely, by promoting glucagon-like peptide-1 (GLP-1) production in the colon. The Agave genus growing in different regions of Mexico also contains important amounts of original fructans, with interesting nutritional and technological properties, but only few data report their physiological effect when added in the diet. Therefore, we decided to evaluate in parallel the effect of supplementation with 10 % agave or chicory fructans on glucose and lipid metabolism in mice. Male C57Bl/6J mice were fed a standard (STD) diet or diet supplemented with Raftilose P95 (RAF), fructans from Agave tequilana Gto. (TEQ) or fructans from Dasylirion spp. (DAS) for 5 weeks. The body weight gain and food intake in mice fed fructans-containing diets were significantly lower than the ones of mice fed the STD diet, TEQ leading to the lowest value. Serum glucose and cholesterol were similarly lower in all fructans-fed groups than in the STD group and correlated to body weight gain. Only RAF led to a significant decrease in serum TAG. As previously shown for RAF, the supplementation with agave fructans (TEQ and DAS) induced a higher concentration of GLP-1 and its precursor, proglucagon mRNA, in the different colonic segments, thus suggesting that fermentable fructans from different botanical origin and chemical structure are able to promote the production of satietogenic/incretin peptides in the lower part of the gut, with promising effects on glucose metabolism, body weight and fat mass development.


Planta | 2008

Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits

Ma del Rosario Abraham-Juárez; Ma. del Carmen Rocha-Granados; Mercedes G. López; R. F. Rivera-Bustamante; Neftalí Ochoa-Alejo

Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a β-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.


Journal of Agricultural and Food Chemistry | 2012

Fructan Metabolism in A. tequilana Weber Blue Variety along Its Developmental Cycle in the Field

Erika Mellado-Mojica; Mercedes G. López

Fructan, as reserve carbohydrate, supplies energy needs during vegetative development, thereby exhibiting variations in its content and composition. Fructan metabolism in Agave tequilana Blue variety from 2- to 7-year-old plants was analyzed in this work. Soluble carbohydrates were determined at all ages. Fructan (328-711 mg/g), sucrose (14-39 mg/g), fructose (11-20 mg/g), glucose (4-14 mg/g), and starch (0.58-4.98 mg/g) were the most abundant carbohydrates. Thin-layer chromatography exhibited that 2-5-year-old plants mainly stored fructooligosaccharides, while 6-7-year-old plants mainly contained long-chain fructans. The fructan degree of polymerization (DP) increased from 6 to 23 throughout plant development. The 7-year-old plants mainly stored highly branched agavins. Partially methylated alditol acetate analyzed by gas chromatography-mass spectrometry reveals that fructan molecular structures became more complex with plant age. For the first time, we report the presence of a large number of DP3 (seven forms), DP4 (eight forms), and DP5 (six forms) isomers for agave fructans. Overall, fructan metabolism in A. tequilana displays changes in its soluble carbohydrates, DP, type, and fructan structures stored, along its developmental cycle in the field.


Planta | 2006

Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants

Alejandro G. Nila; Luisa M. Sandalio; Mercedes G. López; Manuel Gómez; Luis A. del Río; Miguel A. Gómez-Lim

In this work, we have genetically transformed tobacco (Nicotiana tabacum) plants with the peroxisome proliferator-activated receptor cDNA (xPPARα) from Xenopus laevis, which is a transcriptional factor involved in the peroxisomal proliferation and induction of fatty acid ß-oxidation in animal cells. Several transgenic lines were generated and one representative line (T) from the R2 generation was selected for further studies. Analysis of free fatty acids revealed that unsaturated fatty acids such as C16:2 and C16:3 were deficient in line T, whereas saturated fatty acids like C16:0, C18:0, and C20:0 were more abundant than in non-transformed plants. Acyl-CoA oxidase (ACOX) activity was assayed as a marker enzyme of ß-oxidation in crude leaf extracts and it was found that in line T there was a threefold increase in enzyme activity. We also found that the peroxisome population was increased and that catalase (CAT) activity was induced by clofibrate, a known activator of xPPARα protein, in leaves from line T. Taken together, these findings suggest that xPPARα is functional in plants and that its expression in tobacco leads to changes in general lipid metabolism and peroxisomal proliferation as reported in animal cells. Furthermore, it indicates that there is an endogenous ligand in tobacco cells able to activate xPPARα.


Food Chemistry | 2015

Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD.

Erika Mellado-Mojica; Mercedes G. López

Agave syrups are gaining popularity as new natural sweeteners. Identification, classification and discrimination by infrared spectroscopy coupled to chemometrics (NIR-MIR-SIMCA-PCA) and HPAEC-PAD of agave syrups from natural sweeteners were achieved. MIR-SIMCA-PCA allowed us to classify the natural sweeteners according to their natural source. Natural syrups exhibited differences in the MIR spectra region 1500-900 cm(-1). The agave syrups displayed strong absorption in the MIR spectra region 1061-1,063 cm(-1), in agreement with their high fructose content. Additionally, MIR-SIMCA-PCA allowed us to differentiate among syrups from different Agave species (Agavetequilana and Agavesalmiana). Thin-layer chromatography and HPAEC-PAD revealed glucose, fructose, and sucrose as the principal carbohydrates in all of the syrups. Oligosaccharide profiles showed that A. tequilana syrups are mainly composed of fructose (>60%) and fructooligosaccharides, while A. salmiana syrups contain more sucrose (28-32%). We conclude that MIR-SIMCA-PCA and HPAEC-PAD can be used to unequivocally identify and classified agave syrups.


Journal of Plant Physiology | 2014

Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

Edgar Martín Suárez-González; Mercedes G. López; John Paul Délano-Frier; Juan F. Gómez-Leyva

The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species.


The Scientific World Journal | 2015

Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms

Elena Franco-Robles; Mercedes G. López

Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as “ROS scavengers” that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease.


Frontiers in Microbiology | 2016

Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction

Luis A. Pérez-García; Katalin Csonka; Arturo Flores-Carreón; Eine Estrada-Mata; Erika Mellado-Mojica; Tibor Németh; Luz A. López-Ramírez; Renáta Tóth; Mercedes G. López; Csaba Vizler; Annamária Marton; Adél Tóth; Joshua D. Nosanchuk; Attila Gácser; Héctor M. Mora-Montes

Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by β-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1β stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans.


Chilean Journal of Agricultural Research | 2011

Phytochemical Evaluation of Wild and Cultivated Pepper (Capsicum annuum L. and C. pubescens Ruiz & Pav.) from Oaxaca, Mexico

Araceli M. Vera-Guzmán; José Luis Chávez-Servia; José C. Carrillo-Rodríguez; Mercedes G. López

Reports of the last decade show that some types of food and spices included in the human diet, such as pepper (Capsicum annuum L.) can have a positive effect on human health. The Mexican pepper germplasm is poorly documented with regard to variety and the amount of phytochemical compounds that it contains. In the present study, the variation of phytochemical compounds was evaluated in nine fruit variants (morphotypes) of wild and cultivated pepper grown in Oaxaca. ANOVA detected significant differences among pepper morphotypes and ripeness stages of fruits; vitamin C, total phenols, flavonoids, β-carotene, coordinated chromatic of color, and capsaicinoids. The highest values of vitamin C were found in ‘Tabaquero’, ‘Guero’ and ‘Costeno’ morphotypes (151.6 to 183.2 mg 100 g -1 ). With regard to total phenols and flavonoids, ‘Piquin’ and ‘Solterito’ had the highest levels. Coordinates of color a* and b*, and chroma presented a positive correlation with phenol and flavonoid contents. The evaluated morphotypes differed in capsaicin and dihydrocapsaicin; C. annuum had higher capsaicin content (4.9 to 142 µg mL -1 ) than dihydrocapsaicin (1.5 to 65.5 µg mL -1 ) and C. pubescens Ruiz & Pav. showed the opposite pattern.


Frontiers in Microbiology | 2017

Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells

José A. Martínez-Álvarez; Luis A. Pérez-García; Erika Mellado-Mojica; Mercedes G. López; Iván Martínez-Duncker; Leila M. Lopes-Bezerra; Héctor M. Mora-Montes

Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes.

Collaboration


Dive into the Mercedes G. López's collaboration.

Top Co-Authors

Avatar

Erika Mellado-Mojica

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Araceli M. Vera Guzmán

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Cristóbal N. Aguilar

Autonomous University of Coahuila

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge