Mercedes Garayoa
University of Salamanca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mercedes Garayoa.
Haematologica | 2010
Enrique M. Ocio; David Vilanova; Peter Atadja; Patricia Maiso; Edvan Crusoe; Diego Fernández-Lázaro; Mercedes Garayoa; Laura San-Segundo; Teresa Hernández-Iglesias; Enrique de Alava; Wenlin Shao; Yung-Mae Yao; Atanasio Pandiella; Jesús F. San-Miguel
Background Combinations of drug treatments based on bortezomib or lenalidomide plus steroids have resulted in very high response rates in multiple myeloma. However, most patients still relapse, indicating the need for novel combination partners to increase duration of response or to treat relapsed disease. We explored the antimyeloma activity of triple combinations of these well-established schemes with panobinostat, a novel deacetylase inhibitor with a multi-targeted profile. Design and Methods The activity of these combinations was explored in vitro in cell lines by using MTT and annex-in V, ex vivo by flow cytometry, and in vivo using two different murine models of human myeloma: one bearing a subcutaneous plasmacytoma and another with a disseminated myeloma. Moreover, gene expression profiling and immunohistochemical studies were performed. Results The addition of panobinostat (LBH589) to dexamethasone and either bortezomib or lenalidomide resulted in clear potentiation in multiple myeloma cell lines, freshly isolated plasma cells, and murine models of multiple myeloma. The quantification of the potency of these combinations by using the Chou-Talalay method showed synergistic combination indices for all of them. This effect derived from the deregulation of a cluster of genes that was completely different from the sum of genes affected by the single agents (895 and 1323 genes exclusively deregulated by panobinostat and dexamethasone plus bortezomib or lenalidomide, respectively). Functional experiments, such as annexin V staining, cell cycle analysis, and immunohistochemical studies also supported this potentiation. Anti-myeloma efficacy was confirmed in an extramedullary plasmacytoma model and a disseminated luciferized model, in which panobinostat also provided a marked benefit in bone disease. Conclusions The potent activity, together with the exclusive mechanistic profile, provides the rationale for the clinical evaluation of these drug combinations in multiple myeloma.
Clinical Cancer Research | 2004
Silvestre Vicent; Mercedes Garayoa; José María López-Picazo; Maria D. Lozano; Gemma Toledo; Frederik B. Thunnissen; Ramon G Manzano; Luis M. Montuenga
Purpose: An increase in the activity of the mitogen-activated protein kinases (MAPKs) has been correlated with a more malignant phenotype in several tumor models in vitro and in vivo. A key regulatory mechanism of the MAPKs [extracellular signal-regulated kinase (ERK); c-jun NH2-terminal kinase (JNK); and p38] is the dual specificity phosphatase CL100, also called MAPK phosphatase-1 (MKP-1). This study was designed to examine the involvement of CL100/MKP-1 and stress-related MAPKs in lung cancer. Experimental Design: We assessed the expression of CL100/MKP-1 and the activation of the MAPKs in a panel of 18 human cell lines [1 primary normal bronchial epithelium, 8 non-small cell lung cancer (NSCLC), 7 small cell lung cancer (SCLC), and 2 carcinoids] and in 108 NSCLC surgical specimens. Results: In the cell lines, CL100/MKP-1 expression was substantially higher in NSCLC than in SCLC. P-ERK, P-JNK, and P-p38 were activated in SCLC and NSCLC, but the degree of their activation was variable. Immunohistochemistry in NSCLC resection specimens showed high levels of CL100/MKP-1 and activation of the three MAPK compared with normal lung. In univariate analysis, no relationship was found among CL100/MKP-1 expression and P-ERK, P-JNK, or P-p38. Interestingly, high CL100/MKP-1 expression levels independently predicted improved survival in multivariate analysis. JNK activation associated with T1–2 and early stage, whereas ERK activation correlated with late stages and higher T and N. Neither JNK nor ERK activation were independent prognostic factors when studied for patient survival. Conclusions: Our data indicate the relevance of MAPKs and CL100/MKP-1 in lung cancer and point at CL100/MKP-1 as a potential positive prognostic factor in NSCLC. Finally, our study supports the search of new molecular targets for lung cancer therapy within the MAPK signaling pathway.
Leukemia | 2009
Mercedes Garayoa; J.L. García; Carlos Santamaría; Antonio Garcia-Gomez; Juan F. Blanco; Atanasio Pandiella; Jm Hernandez; F.M. Sanchez-Guijo; M-C del Cañizo; Norma C. Gutiérrez; J. F. San Miguel
It is an open question whether in multiple myeloma (MM) bone marrow stromal cells contain genomic alterations, which may contribute to the pathogenesis of the disease. We conducted an array-based comparative genomic hybridization (array-CGH) analysis to compare the extent of unbalanced genomic alterations in mesenchymal stem cells from 21 myeloma patients (MM-MSCs) and 12 normal donors (ND-MSCs) after in vitro culture expansion. Whereas ND-MSCs were devoid of genomic imbalances, several non-recurrent chromosomal gains and losses (>1 Mb size) were detected in MM-MSCs. Using real-time reverse transcription PCR, we found correlative deregulated expression for five genes encoded in regions for which genomic imbalances were detected using array-CGH. In addition, only MM-MSCs showed a specific pattern of ‘hot-spot’ regions with discrete (<1 Mb) genomic alterations, some of which were confirmed using fluorescence in situ hybridization (FISH). Within MM-MSC samples, unsupervised cluster analysis did not correlate with particular clinicobiological features of MM patients. We also explored whether cytogenetic abnormalities present in myelomatous plasma cells (PCs) were shared by matching MSCs from the same patients using FISH. All MM-MSCs were cytogenetically normal for the tested genomic alterations. Therefore we cannot support a common progenitor for myeloma PCs and MSCs.
Leukemia | 2013
Michelle A. Hurchla; Antonio Garcia-Gomez; Mary C. Hornick; Enrique M. Ocio; A. Li; Juan F. Blanco; Lynne Collins; Christopher J. Kirk; David Piwnica-Worms; Ravi Vij; Michael H. Tomasson; Atanasio Pandiella; J. F. San Miguel; Mercedes Garayoa; Katherine N. Weilbaecher
Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM.
Blood | 2009
Enrique M. Ocio; Patricia Maiso; Xi Chen; Mercedes Garayoa; Stela Álvarez-Fernández; Laura San-Segundo; David Vilanova; Lucía López-Corral; Juan Carlos Montero; Teresa Hernández-Iglesias; Enrique de Alava; Carlos M. Galmarini; Pablo Aviles; Carmen Cuevas; Jesús F. San-Miguel; Atanasio Pandiella
Multiple myeloma (MM) remains incurable, and new drugs with novel mechanisms of action are still needed. In this report, we have analyzed the action of Zalypsis, an alkaloid analogous to certain natural marine compounds, in MM. Zalypsis turned out to be the most potent antimyeloma agent we have tested so far, with IC(50) values from picomolar to low nanomolar ranges. It also showed remarkable ex vivo potency in plasma cells from patients and in MM cells in vivo xenografted in mice. Besides the induction of apoptosis and cell cycle arrest, Zalypsis provoked DNA double-strand breaks (DSBs), evidenced by an increase in phospho-histone-H2AX and phospho-CHK2, followed by a striking overexpression of p53 in p53 wild-type cell lines. In addition, in those cell lines in which p53 was mutated, Zalypsis also provoked DSBs and induced cell death, although higher concentrations were required. Immunohistochemical studies in tumors also demonstrated histone-H2AX phosphorylation and p53 overexpression. Gene expression profile studies were concordant with these results, revealing an important deregulation of genes involved in DNA damage response. The potent in vitro and in vivo antimyeloma activity of Zalypsis uncovers the high sensitivity of tumor plasma cells to DSBs and strongly supports the use of this compound in MM patients.
Cancer Research | 2004
Daniel Ajona; Zafira Castaño; Mercedes Garayoa; Enrique Zudaire; Maria J. Pajares; Alfredo Martínez; Frank Cuttitta; Luis M. Montuenga; Ruben Pio
The complement system is important in immunosurveillance against tumors. However, malignant cells are usually resistant to complement-mediated lysis. In this study, we examine the expression of factor H, an inhibitor of complement activation, and factor H-like protein 1 (FHL-1), its alternatively spliced form, in lung cancer. We also evaluate the potential effect of factor H/FHL-1 in the protection of lung cancer cells against the activation of the complement cascade. By Northern blot analysis we demonstrate a high expression of factor H and FHL-1 in most non-small cell lung cancer cell lines, although neuroendocrine pulmonary tumors (small cell lung carcinoma and carcinoid cell lines) had undetectable levels. Western blot analysis of conditioned medium showed the active secretion of factor H and FHL-1 by cells that were positive by Northern blot. Expression of factor H/FHL-1 mRNA was also shown in a series of non-small cell lung cancer biopsies by in situ hybridization. Interestingly, many cultured lung cancer cells were able to bind fluorescence-labeled factor H to their surfaces. Deposition of C3 fragments from normal human serum on H1264, a lung adenocarcinoma cell line, was more efficient when factor H/FHL-1 activity was blocked by specific antibodies. Blocking factor H/FHL-1 activity also enhanced the release of anaphylatoxin C5a and moderately increased the susceptibility of these cells to complement-mediated cytotoxicity. In summary, we demonstrate the expression of factor H and FHL-1 by some lung cancer cells and analyze the contribution of these proteins to the protection against complement activation.
Cancer Research | 2008
Constantine S. Mitsiades; Enrique M. Ocio; Atanasio Pandiella; Patricia Maiso; Consuelo Gajate; Mercedes Garayoa; David Vilanova; Juan Carlos Montero; Nicholas Mitsiades; Ciaran J. McMullan; Nikhil C. Munshi; Teru Hideshima; Dharminder Chauhan; Pablo Aviles; Gabriel Otero; Glynn Faircloth; M. Victoria Mateos; Paul G. Richardson; Faustino Mollinedo; Jesús F. San-Miguel; Kenneth C. Anderson
Despite recent progress in its treatment, multiple myeloma (MM) remains incurable, thus necessitating identification of novel anti-MM agents. We report that the marine-derived cyclodepsipeptide Aplidin exhibits, at clinically achievable concentrations, potent in vitro activity against primary MM tumor cells and a broad spectrum of human MM cell lines, including cells resistant to conventional (e.g., dexamethasone, alkylating agents, and anthracyclines) or novel (e.g., thalidomide and bortezomib) anti-MM agents. Aplidin is active against MM cells in the presence of proliferative/antiapoptotic cytokines or bone marrow stromal cells and has additive or synergistic effects with some of the established anti-MM agents. Mechanistically, a short in vitro exposure to Aplidin induces MM cell death, which involves activation of p38 and c-jun NH(2)-terminal kinase signaling, Fas/CD95 translocation to lipid rafts, and caspase activation. The anti-MM effect of Aplidin is associated with suppression of a constellation of proliferative/antiapoptotic genes (e.g., MYC, MYBL2, BUB1, MCM2, MCM4, MCM5, and survivin) and up-regulation of several potential regulators of apoptosis (including c-JUN, TRAIL, CASP9, and Smac). Aplidin exhibited in vivo anti-MM activity in a mouse xenograft model. The profile of the anti-MM activity of Aplidin in our preclinical models provided the framework for its clinical testing in MM, which has already provided favorable preliminary results.
Haematologica | 2008
Enrique Colado; Stela Álvarez-Fernández; Patricia Maiso; Jesús Martín-Sánchez; Maria Belen Vidriales; Mercedes Garayoa; Enrique M. Ocio; Juan Carlos Montero; Atanasio Pandiella; Jesús F. San Miguel
This study shows that bortezomib induces apoptosis of acute myeloid leukemia cells in vitro. Ad hoc clinical trials might investigate the efficacy of this drug in patients with acute myeloid leukemia. Background Proteasome inhibition represents a promising novel anticancer therapy, and bortezomib is a highly selective reversible inhibitor of the proteasome complex. Acute myeloid leukemia (AML) is an immnunophenotypically heterogeneous group of diseases, with CD34+ cases being associated with drug resistance and poor outcome. We investigated the effects of bortezomib on the growth and survival of AML cells. Design and Methods We studied the in vitro activity and mechanism of action of bortezomib on both cell lines and fresh cells from 28 AML patients including CD34+ and CD34− cases. Results Bortezomib showed potent anti-AML activity (IC50 < 50 nM), which was greater than that of conventional agents (doxorubicin, cytarabine and fludarabine). Moreover, synergistic effects were observed when bortezomib was adminstered in combination with doxorubicin and cytarabine. Mechanistically, bortezomib induced accumulation of cells in the G2/M phase, with up-regulation of p27, together with cell death through an increase in the mitochondrial outer membrane permeability involving caspase-dependent and -independent pathways. The apoptotic activity of bortezomib on fresh CD34+ blast cells from patients was similar to that observed on CD34−blast cells. Importantly, bortezomib was significantly more active than doxorubicin in the immature CD34+ cells, while there were no differences in its action on CD34− cells. Conclusions Bortezomib induces apoptosis in acute myeloid leukemia cells in vitro. Whether this drug might be useful in the treatment of patients with acute myeloid leukemia can be established only in ad hoc clinical trials.
Journal of Histochemistry and Cytochemistry | 2003
Marta Archanco; Francisco Muruzabal; Diana Llopiz; Mercedes Garayoa; Javier Gómez–Ambrosi; Gema Frühbeck; María A. Burrell
Leptin is a hormone originally identified in adipocytes. It is involved in the regulation of fat deposition and energy expenditure and in other functions, such as reproduction. The presence of leptin has been reported in several reproductive organs. However, few studies have addressed its expression in the ovary. Moreover, the existing information is not consistent with regard to the particular cell types responsible for leptin expression. In this work we studied the distribution of leptin in the rat ovary by immunohistochemistry (IHC) and in situ hybridization (ISH). Leptin staining was found in steroid-producing cells: thecal, luteal, and interstitial cells. The strongest signal with both techniques was found in the cytoplasm of oocytes. A weak reaction for leptin mRNA was detected in granulosa of all growing follicles, although leptin protein was found only in the mature follicle. Western blotting analysis detects a strongly reactive 16-kD band, giving further support to the presence of leptin in the rat ovary. Variations in this immunoreactive band were found throughout the estrous cycle. Localization of leptin in the ovary may contribute to a better understanding of female reproductive function.
PLOS ONE | 2012
Antonio Garcia-Gomez; Enrique M. Ocio; Edvan Crusoe; Carlos Santamaría; Pilar Hernandez-Campo; Juan F. Blanco; Fermín Sánchez-Guijo; Teresa Hernández-Iglesias; Jesús G. Briñón; Rosa M. Fisac-Herrero; Francis Y. Lee; Atanasio Pandiella; Jesús F. San Miguel; Mercedes Garayoa
Background Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function. Methods For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model. Results Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2–5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1–2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression. Conclusions Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease.