Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mercedes Robledo is active.

Publication


Featured researches published by Mercedes Robledo.


Nature Genetics | 2011

Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma

Iñaki Comino-Méndez; Francisco Javier Gracia-Aznárez; Francesca Schiavi; Iñigo Landa; Luis J. Leandro-García; Rocío Letón; Emiliano Honrado; Rocío Ramos-Medina; Daniela Caronia; Guillermo Pita; Álvaro Gómez-Graña; Aguirre A. de Cubas; Lucía Inglada-Pérez; Agnieszka Maliszewska; Elisa Taschin; Sara Bobisse; Giuseppe Pica; Paola Loli; Rafael Hernández-Lavado; José A. Díaz; Mercedes Gómez-Morales; Anna González-Neira; Giovanna Roncador; Cristina Rodríguez-Antona; Javier Benitez; Massimo Mannelli; Giuseppe Opocher; Mercedes Robledo; Alberto Cascón

Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.


Lancet Oncology | 2010

SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma

Jean-Pierre Bayley; H.P.M. Kunst; Alberto Cascón; M. L. Sampietro; José Gaal; Esther Korpershoek; Adolfo Hinojar-Gutierrez; Henri Timmers; Lies H. Hoefsloot; Mario Hermsen; Carlos Suárez; A. Karim Hussain; Annette H. J. T. Vriends; Frederik J. Hes; Jeroen C. Jansen; Carli M. J. Tops; Eleonora P. M. Corssmit; Peter de Knijff; Jacques W. M. Lenders; C.W.R.J. Cremers; Peter Devilee; Winand N. M. Dinjens; Ronald R. de Krijger; Mercedes Robledo

BACKGROUND Paragangliomas and phaeochromocytomas are neuroendocrine tumours associated frequently with germline mutations of SDHD, SDHC, and SDHB. Previous studies have shown the imprinted SDHAF2 gene to be mutated in a large Dutch kindred with paragangliomas. We aimed to identify SDHAF2 mutation carriers, assess the clinical genetic significance of SDHAF2, and describe the associated clinical phenotype. METHODS We undertook a multicentre study in Spain and The Netherlands in 443 apparently sporadic patients with paragangliomas and phaeochromocytomas who did not have mutations in SDHD, SDHC, or SDHB. We analysed DNA of 315 patients for germline mutations of SDHAF2; a subset (n=200) was investigated for gross gene deletions. DNA from a group of 128 tumours was studied for somatic mutations. We also examined a Spanish family with head and neck paragangliomas with a young age of onset for the presence of SDHAF2 mutations, undertook haplotype analysis in this kindred, and assessed their clinical phenotype. FINDINGS We did not identify any germline or somatic mutations of SDHAF2, and no gross gene deletions were noted in the subset of apparently sporadic patients analysed. Investigation of the Spanish family identified a pathogenic germline DNA mutation of SDHAF2, 232G-->A (Gly78Arg), identical to the Dutch kindred. INTERPRETATION SDHAF2 mutations do not have an important role in phaeochromocytoma and are rare in head and neck paraganglioma. Identification of a second family with the Gly78Arg mutation suggests that this is a crucial residue for the function of SDHAF2. We conclude that SDHAF2 mutation analysis is justified in very young patients with isolated head and neck paraganglioma without mutations in SDHD, SDHC, or SDHB, and in individuals with familial antecedents who are negative for mutations in all other risk genes. FUNDING Dutch Cancer Society, European Union 6th Framework Program, Fondo Investigaciones Sanitarias, Fundación Mutua Madrileña, and Red Temática de Investigación Cooperativa en Cáncer.


Lancet Oncology | 2011

Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study

Jesús García-Donas; Emilio Esteban; Luis J. Leandro-García; Daniel Castellano; Aranzazu Gonzalez del Alba; Miguel Angel Climent; José Ángel Arranz; Enrique Gallardo; Javier Puente; Joaquim Bellmunt; Begoña Mellado; Esther Martínez; Fernando Moreno; A. Font; Mercedes Robledo; Cristina Rodríguez-Antona

BACKGROUND Sunitinib is a tyrosine kinase inhibitor with proven efficacy in renal-cell carcinoma, but some patients do not respond or need dose reductions due to toxicity. Because there are no validated molecular predictors of response or toxicity to sunitinib, we aimed to identify genetic markers predictive of outcome and toxic effects. METHODS In our observational, prospective study we enrolled previously untreated adults (≥ 18 years) with clear-cell renal-cell carcinoma at 15 institutions in the Spanish Oncology Genitourinary Group in Spain. Patients received sunitinib according to local practice guidelines. We assessed RECIST response, progression-free survival (PFS), overall survival, and toxicity of sunitinib with 16 key polymorphisms in nine genes: VEGFR2 (rs2305948 and rs1870377), VEGFR3 (rs307826, rs448012, and rs307821), PDGFR-α (rs35597368), VEGF-A (rs2010963, rs699947, and rs1570360), IL8 (rs1126647), CYP3A4 (rs2740574), CYP3A5 (rs776746), ABCB1 (rs1045642, rs1128503, and rs2032582), and ABCB2 (rs2231142). We assessed associations with efficacy and toxicity by use of univariable and multivariable analyses (with clinical factors associated with outcomes as covariates). We adjusted for multiplicity using the Bonferroni method; p values of less than 0·0031 before adjustment were deemed to still be significant after adjustment. FINDINGS We enrolled 101 patients between Oct 10, 2007, and Dec 13, 2010. 95 of these patients were included in toxicity analyses and 89 in the efficacy analyses. Two VEGFR3 missense polymorphisms were associated with reduced PFS with sunitinib on multivariable analysis: rs307826 (hazard ratio [HR] per allele 3·57, 1·75-7·30; p(unadjusted)=0·00049, p(adjusted)=0·0079) and rs307821 (3·31, 1·64-6·68; p(unadjusted)=0·00085, p(adjusted)=0·014). The CYP3A5*1 (rs776746) high metabolising allele was associated in a multivariable analysis with an increased risk of dose reductions due to toxicity (HR per allele 3·75, 1·67-8·41; p(unadjusted)=0·0014, p(adjusted)=0·022). No other SNPs were associated with sunitinib response or toxicity. INTERPRETATION Polymorphisms in VEGFR3 and CYP3A5*1 might be able to define a subset of patients with renal-cell carcinoma with decreased sunitinib response and tolerability. If confirmed, these results should promote interventional studies testing alternative therapeutic approaches for patients with such variants. FUNDING Pfizer.


Clinical Cancer Research | 2012

MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma.

Nelly Burnichon; Alberto Cascón; Francesca Schiavi; NicolePaes Morales; Iñaki Comino-Méndez; Nasséra Abermil; Lucía Inglada-Pérez; Aguirre A. de Cubas; Laurence Amar; Marta Barontini; Sandra Bernaldo De Quiroś; Jérôome Bertherat; Yves Jean Bignon; Marinus J. Blok; Sara Bobisse; Salud Borrego; Maurizio Castellano; Philippe Chanson; María Dolores Chiara; Eleonora P. M. Corssmit; Mara Giacchè; Ronald R. de Krijger; Tonino Ercolino; Xavier Girerd; Encarna B. Gomez-Garcia; Álvaro Gómez-Graña; Isabelle Guilhem; Frederik J. Hes; Emiliano Honrado; Esther Korpershoek

Purpose: Pheochromocytomas (PCC) and paragangliomas (PGL) are genetically heterogeneous neural crest–derived neoplasms. Recently we identified germline mutations in a new tumor suppressor susceptibility gene, MAX (MYC-associated factor X), which predisposes carriers to PCC. How MAX mutations contribute to PCC/PGL and associated phenotypes remain unclear. This study aimed to examine the prevalence and associated phenotypic features of germline and somatic MAX mutations in PCC/PGL. Design: We sequenced MAX in 1,694 patients with PCC or PGL (without mutations in other major susceptibility genes) from 17 independent referral centers. We screened for large deletions/duplications in 1,535 patients using a multiplex PCR-based method. Somatic mutations were searched for in tumors from an additional 245 patients. The frequency and type of MAX mutation was assessed overall and by clinical characteristics. Results: Sixteen MAX pathogenic mutations were identified in 23 index patients. All had adrenal tumors, including 13 bilateral or multiple PCCs within the same gland (P < 0.001), 15.8% developed additional tumors at thoracoabdominal sites, and 37% had familial antecedents. Age at diagnosis was lower (P = 0.001) in MAX mutation carriers compared with nonmutated cases. Two patients (10.5%) developed metastatic disease. A mutation affecting MAX was found in five tumors, four of them confirmed as somatic (1.65%). MAX tumors were characterized by substantial increases in normetanephrine, associated with normal or minor increases in metanephrine. Conclusions: Germline mutations in MAX are responsible for 1.12% of PCC/PGL in patients without evidence of other known mutations and should be considered in the genetic work-up of these patients. Clin Cancer Res; 18(10); 2828–37. ©2012 AACR.


Cancer Research | 2009

Clinical Predictors for Germline Mutations in Head and Neck Paraganglioma Patients: Cost Reduction Strategy in Genetic Diagnostic Process as Fall-Out

Hartmut P. H. Neumann; Carsten Christof Boedeker; Lisa Rybicki; Mercedes Robledo; Mario Hermsen; Francesca Schiavi; Maurizio Falcioni; Pingling Kwok; Catherine Bauters; Karen Lampe; Markus Fischer; Emily Edelman; Diana E. Benn; Bruce G. Robinson; Stefanie Wiegand; Gerd Rasp; Boris A. Stuck; Michael M. Hoffmann; Maren Sullivan; Maria A. Sevilla; Marjan M. Weiss; Mariola Pęczkowska; Agata Kubaszek; Pascal Pigny; Robyn L. Ward; Diana L. Learoyd; Michael S Croxson; Dmitry Zabolotny; Svetlana Yaremchuk; Wolfgang Draf

Multiple genes and their variants that lend susceptibility to many diseases will play a major role in clinical routine. Genetics-based cost reduction strategies in diagnostic processes are important in the setting of multiple susceptibility genes for a single disease. Head and neck paraganglioma (HNP) is caused by germline mutations of at least three succinate dehydrogenase subunit genes (SDHx). Mutation analysis for all 3 costs approximately US


JAMA | 2010

Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas.

Li Yao; Francesca Schiavi; Alberto Cascón; Yuejuan Qin; Lucía Inglada-Pérez; Elizabeth E. King; Rodrigo A. Toledo; Tonino Ercolino; Elena Rapizzi; Christopher J. Ricketts; Luigi Mori; Mara Giacchè; Antonella Mendola; Elisa Taschin; Francesca Boaretto; Paola Loli; Maurizio Iacobone; Gian Paolo Rossi; Bernadette Biondi; José Viana Lima-Junior; Claudio E. Kater; Marie Bex; Miikka Vikkula; Ashley B. Grossman; Stephen B. Gruber; Marta Barontini; Alexandre Persu; Maurizio Castellano; Sergio P. A. Toledo; Eamonn R. Maher

2,700 per patient. Genetic classification is essential for downstream management of the patient and preemptive management of family members. Utilizing HNP as a model, we wanted to determine predictors to prioritize the most heritable clinical presentations and which gene to begin testing in HNP presentations, to reduce costs of genetic screening. Patients were tested for SDHB, SDHC, and SDHD intragenic mutations and large deletions. Clinical parameters were analyzed as potential predictors for finding germline mutations. Cost reduction was calculated between prioritized gene testing compared with that for all genes. Of 598 patients, 30.6% had SDHx germline mutations: 34.4% in SDHB, 14.2% SDHC, and 51.4% SDHD. Predictors for an SDHx mutation are family history [odds ratio (OR), 37.9], previous pheochromocytoma (OR, 10.9), multiple HNP (OR, 10.6), age <or=40 years (OR, 4.0), and male gender (OR, 3.5). By screening only preselected cases and a stepwise approach, 60% cost reduction can be achieved, with 91.8% sensitivity and 94.5% negative predictive value. Our data give evidence that clinical parameters can predict for mutation and help prioritize gene testing to reduce costs in HNP. Such strategy is cost-saving in the practice of genetics-based personalized health care.


Cytoskeleton | 2010

Tumoral and tissue-specific expression of the major human β-tubulin isotypes†

Luis J. Leandro-García; Susanna Leskelä; Iñigo Landa; Cristina Montero-Conde; Elena López-Jiménez; Rocío Letón; Alberto Cascón; Mercedes Robledo; Cristina Rodríguez-Antona

CONTEXT Pheochromocytomas and paragangliomas are genetically heterogeneous neural crest-derived neoplasms. We recently identified germline mutations of the novel transmembrane-encoding gene FP/TMEM127 in familial and sporadic pheochromocytomas consistent with a tumor suppressor effect. OBJECTIVES To examine the prevalence and spectrum of FP/TMEM127 mutations in pheochromocytomas and paragangliomas and to test the effect of mutations in vitro. DESIGN, SETTING, AND PARTICIPANTS We sequenced the FP/TMEM127 gene in 990 individuals with pheochromocytomas and/or paragangliomas, including 898 previously unreported cases without mutations in other susceptibility genes from 8 independent worldwide referral centers between January 2009 and June 2010. A multiplex polymerase chain reaction-based method was developed to screen for large gene deletions in 545 of these samples. Confocal microscopy of 5 transfected mutant proteins was used to determine their subcellular localization. MAIN OUTCOME MEASURES The frequency and type of FP/TMEM127 mutation or deletion was assessed and correlated with clinical variables; the subcellular localization of 5 overexpressed mutants was compared with wild-type FP/TMEM127 protein. RESULTS We identified 19 potentially pathogenic FP/TMEM127 germline mutations in 20 independent families, but no large deletions were detected. All mutation carriers had adrenal tumors, including 7 bilateral (P = 2.7 × 10(-4)) and/or with familial disease (5 of 20 samples; P = .005). The median age at disease onset in the FP/TMEM127 mutation group was similar to that of patients without a mutation (41.5 vs 45 years, respectively; P = .54). The most common presentation was that of a single benign adrenal tumor in patients older than 40 years. Malignancy was seen in 1 mutation carrier (5%). Expression of 5 novel FP/TMEM127 mutations in cell lines revealed diffuse localization of the mutant proteins in contrast with the discrete multiorganelle distribution of wild-type TMEM127. CONCLUSIONS Germline mutations of FP/TMEM127 were associated with pheochromocytoma but not paraganglioma and occurred in an age group frequently excluded from genetic screening algorithms. Disease-associated mutations disrupt intracellular distribution of the FP/TMEM127 protein.


Molecular Endocrinology | 2010

Research Resource: Transcriptional Profiling Reveals Different Pseudohypoxic Signatures in SDHB and VHL-Related Pheochromocytomas

Elena López-Jiménez; Gonzalo Gómez-López; L. Javier Leandro-García; Iván Muñoz; Francesca Schiavi; Cristina Montero-Conde; Aguirre A. de Cubas; Ricardo Ramires; Iñigo Landa; Susanna Leskelä; Agnieszka Maliszewska; Lucía Inglada-Pérez; Leticia de la Vega; Cristina Rodríguez-Antona; Rocío Letón; Carmen Bernal; Jose M. de Campos; Cristina Diez-Tascón; Mario F. Fraga; Cesar Boullosa; David G. Pisano; Giuseppe Opocher; Mercedes Robledo; Alberto Cascón

The β‐tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on β‐tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex β‐tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT‐PCR technique that accurately determines the mRNA expression of the eight human β‐tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell‐specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total β‐tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex β‐tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule‐binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response.


PLOS Genetics | 2009

The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

Iñigo Landa; Sergio Ruiz-Llorente; Cristina Montero-Conde; Lucía Inglada-Pérez; Francesca Schiavi; Susanna Leskelä; Guillermo Pita; Roger L. Milne; Javier Maravall; Ignacio Ramos; Víctor Andía; Paloma Rodríguez-Poyo; Antonino Jara-Albarrán; Amparo Meoro; Cristina Del Peso; Luis Arribas; Pedro Iglesias; Javier Caballero; Joaquín Serrano; Antonio Picó; Francisco Pomares; Gabriel Giménez; Pedro López-Mondéjar; Roberto Castello; Isabella Merante-Boschin; Maria Rosa Pelizzo; Didac Mauricio; Giuseppe Opocher; Cristina Rodríguez-Antona; Anna González-Neira

The six major genes involved in hereditary susceptibility for pheochromocytoma (PCC)/paraganglioma (PGL) (RET, VHL, NF1, SDHB, SDHC, and SDHD) have been recently integrated into the same neuronal apoptotic pathway where mutations in any of these genes lead to cell death. In this model, prolyl hydroxylase 3 (EglN3) abrogation plays a pivotal role, but the molecular mechanisms underlying its inactivation are currently unknown. The aim of the study was to decipher specific alterations associated with the different genetic classes of PCCs/PGLs. With this purpose, 84 genetically characterized tumors were analyzed by means of transcriptional profiling. The analysis revealed a hypoxia-inducible factor (HIF)-related signature common to succinate dehydrogenase (SDH) and von Hippel-Lindau (VHL) tumors, that differentiated them from RET and neurofibromatosis type 1 cases. Both canonical HIF-1α and HIF-2α target genes were overexpressed in the SDH/VHL cluster, suggesting that a global HIF deregulation accounts for this common profile. Nevertheless, when we compared VHL tumors with SDHB cases, which often exhibit a malignant behavior, we found that HIF-1α target genes showed a predominant activation in the VHL PCCs. Expression data from 67 HIF target genes was sufficient to cluster SDHB and VHL tumors into two different groups, demonstrating different pseudo-hypoxic signatures. In addition, VHL-mutated tumors showed an unexpected overexpression of EglN3 mRNA that did not lead to significantly different EglN3 protein levels. These findings pave the way for more specific therapeutic approaches for malignant PCCs/PGLs management based on the patients genetic alteration.


The Journal of Clinical Endocrinology and Metabolism | 2009

Genetics of pheochromocytoma and paraganglioma in Spanish patients.

Alberto Cascón; Guillermo Pita; Nelly Burnichon; Iñigo Landa; Elena López-Jiménez; Cristina Montero-Conde; Susanna Leskelä; Luis J. Leandro-García; Rocío Letón; Cristina Rodríguez-Antona; José A. Díaz; Emilio López-Vidriero; Anna González-Neira; Ana Velasco; Xavier Matias-Guiu; Anne-Paule Gimenez-Roqueplo; Mercedes Robledo

In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era.

Collaboration


Dive into the Mercedes Robledo's collaboration.

Top Co-Authors

Avatar

Alberto Cascón

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Javier Benitez

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rocío Letón

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Lucía Inglada-Pérez

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Cristina Montero-Conde

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iñigo Landa

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge