Meredith A. J. Hullar
Fred Hutchinson Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meredith A. J. Hullar.
Cancer treatment and research | 2014
Meredith A. J. Hullar; Andrea N. Burnett-Hartman; Johanna W. Lampe
An expanding body of evidence supports a role for gut microbes in the etiology of cancer. Previously, the focus was on identifying individual bacterial species that directly initiate or promote gastrointestinal malignancies; however, the capacity of gut microbes to influence systemic inflammation and other downstream pathways suggests that the gut microbial community may also affect risk of cancer in tissues outside of the gastrointestinal tract. Functional contributions of the gut microbiota that may influence cancer susceptibility in the broad sense include (1) harvesting otherwise inaccessible nutrients and/or sources of energy from the diet (i.e., fermentation of dietary fibers and resistant starch); (2) metabolism of xenobiotics, both potentially beneficial or detrimental (i.e., dietary constituents, drugs, carcinogens, etc.); (3) renewal of gut epithelial cells and maintenance of mucosal integrity; and (4) affecting immune system development and activity. Understanding the complex and dynamic interplay between the gut microbiome, host immune system, and dietary exposures may help elucidate mechanisms for carcinogenesis and guide future cancer prevention and treatment strategies.
Proceedings of the Nutrition Society | 2013
Johanna W. Lampe; Sandi L. Navarro; Meredith A. J. Hullar; Ali Shojaie
Technologic advances now make it possible to collect large amounts of genetic, epigenetic, metabolomic and gut microbiome data. These data have the potential to transform approaches towards nutrition counselling by allowing us to recognise and embrace the metabolic, physiologic and genetic differences among individuals. The ultimate goal is to be able to integrate these multi-dimensional data so as to characterise the health status and disease risk of an individual and to provide personalised recommendations to maximise health. To this end, accurate and predictive systems-based measures of health are needed that incorporate molecular signatures of genes, transcripts, proteins, metabolites and microbes. Although we are making progress within each of these omics arenas, we have yet to integrate effectively multiple sources of biologic data so as to provide comprehensive phenotypic profiles. Observational studies have provided some insights into associative interactions between genetic or phenotypic variation and diet and their impact on health; however, very few human experimental studies have addressed these relationships. Dietary interventions that test prescribed diets in well-characterised study populations and that monitor system-wide responses (ideally using several omics platforms) are needed to make correlation-causation connections and to characterise phenotypes under controlled conditions. Given the growth in our knowledge, there is the potential to develop personalised dietary recommendations. However, developing these recommendations assumes that an improved understanding of the phenotypic complexities of individuals and their responses to the complexities of their diets will lead to a sustainable, effective approach to promote health and prevent disease - therein lies our challenge.
Cancer Epidemiology, Biomarkers & Prevention | 2015
Meredith A. J. Hullar; Samuel M. Lancaster; Fei Li; Elizabeth Tseng; Karlyn D. Beer; Charlotte Atkinson; Kristiina Wähälä; Wade Copeland; Timothy W. Randolph; Katherine M. Newton; Johanna W. Lampe
Background: Lignans in plant foods are metabolized by gut bacteria to the enterolignans, enterodiol (END) and enterolactone (ENL). Enterolignans have biologic activities important to the prevention of cancer and chronic diseases. We examined the composition of the gut microbial community (GMC) as a contributor to human enterolignan exposure. Methods: We evaluated the association between the GMC in stool, urinary enterolignan excretion, and diet from a 3-day food record in 115 premenopausal (ages 40–45 years) women in the United States. Urinary enterolignans were measured using gas chromatography–mass spectroscopy. The GMC was evaluated using 454 pyrosequencing of the 16S rRNA gene. Sequences were aligned in SILVA (www.arb-silva.de). Operational taxonomic units were identified at 97% sequence similarity. Taxonomic classification was performed and alpha and beta diversity in relationship to ENL production were assessed. Multivariate analysis and regression were used to model the association between enterolignan excretion and the GMC. Bacteria associated with ENL production were identified using univariate analysis and ridge regression. Results: After adjusting for dietary fiber intake and adiposity, we found a significant positive association between ENL excretion and either the GMC (P = 0.0007), or the diversity of the GMC (P = 0.01). The GMC associated with high ENL production was distinct (UNIFRAC, P < 0.003, MRPP) and enriched in Moryella spp., Acetanaerobacterium spp., Fastidiosipila spp., and Streptobacillus spp. Conclusion: Diversity and composition of the GMC are associated with increased human exposure to enterolignans. Impact: Differences in gut microbial diversity and composition explain variation in gut metabolic processes that affect environmental exposures and influence human health. Cancer Epidemiol Biomarkers Prev; 24(3); 546–54. ©2014 AACR.
Nestle Nutrition Institute Workshop Series | 2012
Meredith A. J. Hullar; Johanna W. Lampe
The composition of the gut microbiome is hypothesized to be an environmental factor that contributes to obesity. Results of several human studies suggest that obesity is associated with differences in the gut microbiota composition, reduced bacterial diversity, and altered representation of bacterial metabolic pathways. The obese phenotype is associated with increased microbial fermentation and energy extraction from non-digestible food components; however, until recently it was not clear how relatively small increases in energy extraction could contribute to the large and rapid weight gain observed in the animal studies. Mechanisms by which the gut microbiome may influence metabolism and energy homeostasis include regulation of energy uptake from diet, interaction with signaling molecules involved in host metabolism, modification of gut permeability, release of gut hormones, and low-grade, chronic inflammation, the latter being a hallmark of obesity-related diseases.
British Journal of Nutrition | 2013
Abby Klosterbuer; Meredith A. J. Hullar; Fei Li; Elizabeth Traylor; Johanna W. Lampe; William Thomas; Joanne L. Slavin
Fibre has been shown to exert a number of benefits on gastrointestinal (GI) health, yet its intake is low. Addition of novel fibres to food products may increase fibre intake and improve gut health. The objective of the present study was to evaluate the influence of three novel fibres on GI outcomes in healthy human subjects. A total of twenty healthy participants (ten men and ten women) with normal BMI (23 (sem 2) kg/m2) participated in the present randomised, double-blind, cross-over study with five treatment periods. Participants consumed a maltodextrin control or 20–25 g/d fibre from soluble maize fibre (SCF) or resistant starch (RS), alone or in combination with pullulan (SCF+P and RS+P). The treatment periods were 7 d with a 3-week washout between the periods. Stool samples were collected on day 7 of each period, and GI tolerance was assessed via a questionnaire on days 1 and 6. There were no treatment differences in stool weight or consistency. SCF significantly reduced stool pH and increased total SCFA production compared with RS and control. RS+P significantly increased the percentage of butyrate compared with all the other treatments. Overall, GI symptoms were minimal. SCF+P led to the highest GI score on day 1, while RS+P had the highest score on day 6. Both SCF treatments caused a significant shift in the gut microbial community. These functional fibres are generally well tolerated, have minimal effects on laxation and may lead to beneficial changes in SCFA production in healthy adults.
Annals of Epidemiology | 2016
Benjamin C. Fu; Timothy W. Randolph; Unhee Lim; Kristine R. Monroe; Iona Cheng; Lynne R. Wilkens; Loic Le Marchand; Meredith A. J. Hullar; Johanna W. Lampe
PURPOSE The development of next-generation sequencing and accompanying bioinformatics tools has revolutionized characterization of microbial communities. As interest grows in the role of the human microbiome in health and disease, so does the need for well-powered, robustly designed epidemiologic studies. Here, we discuss sources of bias that can arise in gut microbiome research. METHODS Research comparing methods of specimen collection, preservation, processing, and analysis of gut microbiome samples is reviewed. Although selected studies are primarily based on the gut, many of the same principles are applicable to samples derived from other anatomical sites. Methods for participant recruitment and sampling of the gut microbiome implemented in an ongoing population-based study, the Multiethnic Cohort (MEC), are also described. RESULTS Variation in methodologies can influence the results of human microbiome studies. To help minimize bias, techniques such as sample homogenization, addition of internal standards, and quality filtering should be adopted in protocols. Within the MEC, participant response rates to stool sample collection were comparable to other studies, and in-home stool sample collection yields sufficient high-quality DNA for gut microbiome analysis. CONCLUSIONS Application of standardized and quality controlled methods in human microbiome studies is necessary to ensure data quality and comparability among studies.
The Annals of Applied Statistics | 2018
Timothy W. Randolph; Sen Zhao; Wade Copeland; Meredith A. J. Hullar; Ali Shojaie
The analysis of human microbiome data is often based on dimension-reduced graphical displays and clusterings derived from vectors of microbial abundances in each sample. Common to these ordination methods is the use of biologically motivated definitions of similarity. Principal coordinate analysis, in particular, is often performed using ecologically defined distances, allowing analyses to incorporate context-dependent, non-Euclidean structure. In this paper, we go beyond dimension-reduced ordination methods and describe a framework of high-dimensional regression models that extends these distance-based methods. In particular, we use kernel-based methods to show how to incorporate a variety of extrinsic information, such as phylogeny, into penalized regression models that estimate taxonspecific associations with a phenotype or clinical outcome. Further, we show how this regression framework can be used to address the compositional nature of multivariate predictors comprised of relative abundances; that is, vectors whose entries sum to a constant. We illustrate this approach with several simulations using data from two recent studies on gut and vaginal microbiomes. We conclude with an application to our own data, where we also incorporate a significance test for the estimated coefficients that represent associations between microbial abundance and a percent fat.
Archive | 2014
Seth C. Yoder; Samuel M. Lancaster; Meredith A. J. Hullar; Johanna W. Lampe
Lignans are fiber-associated compounds found in many plant families and common foods, including grains, nuts, seeds, vegetables, and drinks such as tea, coffee or wine. The highest concentrations of dietary lignans are found in flaxseed as secoisolariciresinol diglucoside. Other dietary lignans include sesamin, matairesinol, pinoresinol and lariciresinol. Plant lignans can be converted by a consortium of intestinal bacteria to enterolignans, enterodiol and enterolactone. Enterolignans have a variety of biologic activities, including tissue-specific estrogen receptor activation, and anti-inflammatory and apoptotic effects, that may influence disease risk in humans. Differences in bioavailability of various plant lignans from foods, and variation in enterolignan production among gut microbial communities contribute to large interindividual variation in enterolignan exposure. Consequently, studying associations between lignan exposure and health and disease in humans is challenging. Current evidence suggests a diet rich in lignans may be beneficial, but further research is needed to characterize the specific role of lignans.
American Journal of Veterinary Research | 2017
Michael A. Harkey; Alexandra M. Villagran; Gopalakrishnan M. Venkataraman; Wendy Leisenring; Meredith A. J. Hullar; Beverly Torok-Storb
OBJECTIVE To determine whether specific alleles of candidate genes of the major histocompatibility complex (MHC) and innate immune system were associated with gastric dilatation-volvulus (GDV) in Great Danes. ANIMALS 42 healthy Great Danes (control group) and 39 Great Danes with ≥ 1 GDV episode. PROCEDURES Variable regions of the 2 most polymorphic MHC genes (DLA88 and DRB1) were amplified and sequenced from the dogs in each group. Similarly, regions of 3 genes associated with the innate immune system (TLR5, NOD2, and ATG16L1), which have been linked to inflammatory bowel disease, were amplified and sequenced. Alleles were evaluated for associations with GDV, controlling for age and dog family. RESULTS Specific alleles of genes DLA88, DRB1, and TLR5 were significantly associated with GDV. One allele of each gene had an OR > 2 in the unadjusted univariate analyses and retained a hazard ratio > 2 after controlling for temperament, age, and familial association in the multivariate analysis. CONCLUSIONS AND CLINICAL RELEVANCE The 3 GDV-associated alleles identified in this study may serve as diagnostic markers for identification of Great Danes at risk for GDV. Additional research is needed to determine whether other dog breeds have the same genetic associations. These findings also provided a new target for research into the etiology of, and potential treatments for, GDV in dogs.
Physiological Genomics | 2016
Jason M. Knight; Eunji Kim; Ivan Ivanov; Laurie A. Davidson; Jennifer S. Goldsby; Meredith A. J. Hullar; Timothy W. Randolph; Andrew M. Kaz; Lisa Levy; Johanna W. Lampe; Robert S. Chapkin
The strength of associations between various exposures (e.g., diet, tobacco, chemopreventive agents) and colorectal cancer risk may partially depend on the complex interaction between epithelium and stroma across anatomic subsites. Currently, baseline data describing genome-wide coding and long noncoding gene expression profiles in the healthy colon specific to tissue type and location are lacking. Therefore, colonic mucosal biopsies from 10 healthy participants who were enrolled in a clinical study to evaluate effects of lignan supplementation on gut resiliency were used to characterize the site-specific global gene expression signatures associated with stromal vs. epithelial cells in the sigmoid colon and rectum. Using RNA-seq, we demonstrate that tissue type and location patterns of gene expression and upstream regulatory pathways are distinct. For example, consistent with a key role of stroma in the crypt niche, mRNAs associated with immunoregulatory and inflammatory processes (i.e., CXCL14, ANTXR1), smooth muscle contraction (CALD1), proliferation and apoptosis (GLP2R, IGFBP3), and modulation of extracellular matrix (MMP2, COL3A1, MFAP4) were all highly expressed in the stroma. In comparison, HOX genes (HOXA3, HOXD9, HOXD10, HOXD11, and HOXD-AS2, a HOXD cluster antisense RNA 2), and WNT5B expression were also significantly higher in sigmoid colon compared with the rectum. These findings provide strong impetus for considering colorectal tissue subtypes and location in future observational studies and clinical trials designed to evaluate the effects of exposures on colonic health.