Meredith A. Kelly
Dartmouth College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meredith A. Kelly.
Geology | 2014
Justin S. Stroup; Meredith A. Kelly; Thomas V. Lowell; Patrick J. Applegate; Jennifer A. Howley
Geology v. 42, p. [347–350][1], doi:10.1130/G35245.1 There was an error in determining the number of 10Be atoms per gram of quartz for samples JS-09-20, -24, -14, and -15 and, thus, the calculated 10Be ages. All usage of these samples and their ages has been corrected in the GSA Data Repository (
Environmental Science & Technology | 2013
Samuel A. Beal; Brian P. Jackson; Meredith A. Kelly; Justin S. Stroup; Joshua D. Landis
Both modern anthropogenic emissions of mercury (Hg), primarily from artisanal and small-scale gold mining (ASGM), and preindustrial anthropogenic emissions from mining are thought to have a large impact on present-day atmospheric Hg deposition. We study the spatial distribution of Hg and its depositional history over the past ∼400 years in sediment cores from lakes located regionally proximal (∼90-150 km) to the largest ASGM in Peru and distal (>400 km) to major preindustrial mining centers. Total Hg concentrations in surface sediments from fourteen lakes are typical of remote regions (10-115 ng g(-1)). Hg fluxes in cores from four lakes demonstrate preindustrial Hg deposition in southeastern Peru was spatially variable and at least an order of magnitude lower than previously reported fluxes in lakes located closer to mining centers. Average modern (A.D. 2000-2011) Hg fluxes in these cores are 3.4-6.9 μg m(-2) a(-1), compared to average preindustrial (A.D. 1800-1850) fluxes of 0.8-2.5 μg m(-2) a(-1). Modern Hg fluxes determined from the four lakes are on average 3.3 (±1.5) times greater than their preindustrial fluxes, similar to those determined in other remote lakes around the world. This agreement suggests that Hg emissions from ASGM are likely not significantly deposited in nearby down-wind regions.
Science | 2008
Thomas V. Lowell; Meredith A. Kelly
Determining the geographical extent of a 1300-year cold event that occurred just before the current warm period requires accurate chronologies.
Science Advances | 2017
Shannon E. Loomis; J. M. Russell; Dirk Verschuren; Carrie Morrill; Gijs De Cort; Jaap S. Sinninghe Damsté; Daniel O. Olago; Hilde Eggermont; F. Alayne Street-Perrott; Meredith A. Kelly
A new temperature record from East Africa demonstrates that the tropical lapse rate steepened during the last ice age. The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.
Geology | 2014
Meredith A. Kelly; J. M. Russell; Margaret B. Baber; Jennifer A. Howley; Shannon E. Loomis; Susan Zimmerman; Bob Nakileza; Joshua Lukaye
Glaciers on the worlds highest tropical mountains are among the most sensitive components of the cryosphere, yet the climatic controls that infl uence their fl uctuations are not fully under- stood. Here we present the fi rst 10 Be ages of glacial moraines in Africa and use these to assess the climatic conditions that infl uenced past tropical glacial extents. We applied 10 Be surface exposure dating to determine the ages of quartz-rich boulders atop moraines in the Rwenzori Mountains (~1°N, 30°E), located on the border of Uganda and the Democratic Republic of Congo. The 10 Be ages document expanded glaciers ca. 23.4 and 20.1 ka, indicating that glaciers in equatorial East Africa advanced during the global Last Glacial Maximum (ca. 26-19.5 ka). A comparison of these moraine ages with regional paleoclimate records indicates that Rwen- zori glaciers expanded contemporaneously with dry and cold conditions. Recession from the moraines occurred after ca. 20.1 ka, similar in timing to a rise in air temperature documented in East African lake records. Our results suggest that, on millennial time scales, past fl uctua- tions of Rwenzori glaciers were strongly infl uenced by air temperature.
Geophysical Research Letters | 2016
Laura B. Levy; Meredith A. Kelly; Thomas V. Lowell; Brenda L. Hall; Jennifer A. Howley; Colby A. Smith
We present a 10Be chronology of late glacial to early Holocene fluctuations of a Greenland ice sheet outlet glacier and the adjacent Milne Land ice cap in central East Greenland. Ages of boulders on bedrock indicate that both ice masses receded during the Younger Dryas (YD), likely due to rising summer temperatures. Since Greenland ice core records register cold mean annual temperatures throughout the YD, these ice-marginal data support climate conditions characterized by strong seasonality. The ice sheet outlet glacier and ice cap deposited inner Milne Land Stade moraines at 11.4 ± 0.8 ka and 11.4 ± 0.6 ka, respectively (mean moraine ages and 1σ uncertainties). Based on the coeval moraine ages, we suggest that both ice masses responded to climate conditions acting on the ice margins, specifically ablation. Moreover, the ice sheet responded sensitively (i.e., on the same time scale as a small ice cap) to climate conditions.
The Holocene | 2017
Esteban A. Sagredo; Thomas V. Lowell; Meredith A. Kelly; Summer Rupper; Juan Carlos Aravena; Dylan J. Ward; Andrew Malone
Deciphering the climate changes that influenced the glacial fluctuations of the last millennium requires documenting the spatial and temporal patterns of these glacial events. Here, we estimate the change in equilibrium line altitudes (ELAs) between the most prominent glacial advance of the last millennium and the present for four alpine glaciers located in different climatic regimes along the Andes. For each glacier, we reconstruct scenarios of climatic conditions (temperature and precipitation anomalies) that accommodate the observed ELA changes. We focus on the following glaciers: an alpine glacier in the Cordillera Vilcanota (13°S), Tapado glacier (30°S), Cipreses glacier (34°S), and Tranquilo glacier (47°S). Our results show that the range of possible temperature and precipitation anomalies that accommodate the observed ELA changes overlap significantly at three of the four sites (i.e. Vilcanota, Cipreses, and Tranquilo). Only Tapado glacier exhibits a set of climate anomalies that differs from the other three sites. Assuming no change in precipitation, the estimated ELA changes require a cooling of at least 0.7°C in the Cordillera Vilcanota, 1.0°C at Tapado glacier, 0.6°C at Cipreses glacier, and 0.7°C at Tranquilo glacier. Conversely, assuming no change in temperature, the estimated ELA changes are explained by increases in precipitation exceeding 0.52 m yr−1 (64% of the annual precipitation) in the Cordillera Vilcanota, 0.31 m yr−1 (89%) at Tapado glacier, 0.22 m yr−1 (27%) at Cipreses glacier, and 0.3 m yr−1 (27%) at Tranquilo glacier. By mapping the ELA changes and modeling the potential climate forcing across diverse climate settings, we aim to contribute toward documenting the spatial variability of climate conditions during the last millennium, a key step to decipher the mechanisms underlying the glacial fluctuation that occurred during this period.
Arctic, Antarctic, and Alpine Research | 2010
Alison S. Criscitiello; Meredith A. Kelly; Bruno Tremblay
Abstract Surface height and mass balance changes of Taku and Lemon Creek Glaciers within Juneau Icefield, Alaska, are examined to determine the relationship between these parameters and climatic forcing. Both Taku and Lemon Creek Glaciers are located in a maritime climate, but they behave very differently. Taku Glacier, a former tidewater glacier, is ∼70 times larger than Lemon Creek Glacier, and its dynamics are largely a result of the post-tidewater glacier cycle which causes insensitivity to climate change during advance phases. Taku Glacier is advancing at present but its surface height, mass balance, and rate of advance have decreased since 1988. Lemon Creek Glacier, a small alpine glacier, is retreating and has maintained a negative mass balance since 1953. Mass balance records from both Taku and Lemon Creek Glaciers correlate well with temperature and show little correlation with precipitation. The mass balance of these glaciers also correlates with the Pacific Decadal Oscillation (PDO). However, the Lemon Creek Glacier mass balance record shows a stronger correlation with the PDO than that of Taku Glacier. Taku Glacier shows a longer delay in response to warming in Southeast Alaska likely due to post-tidewater glacier dynamics, its large accumulation area ratio (AAR), and its size.
The Holocene | 2017
Krista E. H. Slemmons; Aaron Medford; Brenda L. Hall; Jeffery R. Stone; Suzanne McGowan; Thomas V. Lowell; Meredith A. Kelly; Jasmine E. Saros
We investigated the response of lake algal communities to changes in glacial meltwater from the Renland Ice Cap (Greenland) through the Holocene to assess whether influxes always elicit consistent responses or novel responses. We measured sedimentary algal pigments in two proximal lakes, snow-fed Raven and glacier- and snow-fed Bunny Lake, and diatom community structure and turnover in Bunny Lake. Diatom data were not available in Raven Lake. We also modeled lake-level change in Bunny Lake to identify how glacial meltwater may have altered diatom habitat availability through time. Through a series of glacier advances and retreats over the Holocene, the algal response in Bunny Lake was relatively constant until approximately 1015 yr BP, after which there were major changes in sedimentary algal remains. Algal pigment concentrations sharply declined, and diatom species richness increased. Diatom community structure underwent three reorganizations. Until 1015 yr BP, assemblages were dominated by Pinnularia braunii and Aulacoseira pffaffiana. However, approximately 1015–480 yr BP, these species declined and Tabellaria flocculosa and Hannaea arcus became a significant component of the assemblage. Approximately 440 yr BP, A. pfaffiana increased along with species indicating elevated nitrogen. In contrast, the algal pigment records from nearby snow-fed Raven Lake showed different and minimal change through time. Our results suggest that changes in the magnitude and composition of meltwater in our two study lakes were unique over the last 1000 yr BP and elicited a non-linear threshold response absent during other periods of glacier advance and retreat. Deciphering the degree to which glaciers structure algal communities over time has strong implications for lakes as glaciers continue to recede.
Arctic, Antarctic, and Alpine Research | 2018
Laura B. Levy; Meredith A. Kelly; Patrick A. Applegate; Jennifer A. Howley; Ross A. Virginia
ABSTRACT The response of the Greenland Ice Sheet to future climate change is relatively unconstrained. Determining the extents and rates of ice-margin fluctuations during the Holocene provides a longer-term perspective on ice-sheet changes and offers an analogue of how the ice-sheet may respond to future changes. Here, we present sixteen new 10Be ages of boulders on moraines, boulders perched on bedrock, and bedrock surfaces that mark the timing of ice-margin fluctuations during the Holocene in the Kangerlussuaq region of southern west Greenland. We show that the Keglen moraines date to 8.0 ± 0.3 ka (n = 6) and that the average ice-margin retreat rate slowed from about 49 to 13 m yr−1 after about 8.0 ka, likely in response to the ice margin retreating onto land at the head of the fjord Kangerlussuaq at this time. The average retreat rate further slowed to less than 1 m yr−1 between 6.8 ka and 4.2 cal kyr BP, a time when nearby paleoclimate records document warm summers and increased precipitation. Finally, we show that the historical advances of the ice margin occurred during the past 200 years, likely in response to cooler summer temperatures.