Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meredith E. Jackrel is active.

Publication


Featured researches published by Meredith E. Jackrel.


Molecular and Cellular Biology | 2008

A Direct Interaction between the Utp6 Half-a-Tetratricopeptide Repeat Domain and a Specific Peptide in Utp21 Is Essential for Efficient Pre-rRNA Processing

Erica A. Champion; Bennett H. Lane; Meredith E. Jackrel; Lynne Regan; Susan J. Baserga

ABSTRACT The small subunit (SSU) processome is a ribosome biogenesis intermediate that assembles from its subcomplexes onto the pre-18S rRNA with yet unknown order and structure. Here, we investigate the architecture of the UtpB subcomplex of the SSU processome, focusing on the interaction between the half-a-tetratricopeptide repeat (HAT) domain of Utp6 and a specific peptide in Utp21. We present a comprehensive map of the interactions within the UtpB subcomplex and further show that the N-terminal domain of Utp6 interacts with Utp18 while the HAT domain interacts with Utp21. Using a panel of point and deletion mutants of Utp6, we show that an intact HAT domain is essential for efficient pre-rRNA processing and cell growth. Further investigation of the Utp6-Utp21 interaction using both genetic and biophysical methods shows that the HAT domain binds a specific peptide ligand in Utp21, the first example of a HAT domain peptide ligand, with a dissociation constant of 10 μM.


ACS Chemical Biology | 2010

Screening Libraries To Identify Proteins with Desired Binding Activities Using a Split-GFP Reassembly Assay

Meredith E. Jackrel; Aitziber L. Cortajarena; Tina Y. Liu; Lynne Regan

Designer protein modules, which bind specifically to a desired target, have numerous potential applications. One approach to creating such proteins is to construct and screen libraries. Here we present a detailed description of using a split-GFP reassembly assay to screen libraries and identify proteins with novel binding properties. Attractive features of the split-GFP based screen are the absence of false positives and the simplicity, robustness, and ease of automation of the screen. Here, we describe both the construction of a naive protein library, and screening of the library using the split-GFP assay to identify proteins that bind specifically to chosen peptide sequences.


Molecular Cell | 2015

The Hsp104 N-terminal domain enables disaggregase plasticity and potentiation.

Elizabeth A. Sweeny; Meredith E. Jackrel; Michelle S. Go; Matthew Sochor; Beatrice M. Razzo; Morgan E. DeSantis; Kushol Gupta; James Shorter

The structural basis by which Hsp104 dissolves disordered aggregates and prions is unknown. A single subunit within the Hsp104 hexamer can solubilize disordered aggregates, whereas prion dissolution requires collaboration by multiple Hsp104 subunits. Here, we establish that the poorly understood Hsp104 N-terminal domain (NTD) enables this operational plasticity. Hsp104 lacking the NTD (Hsp104(ΔN)) dissolves disordered aggregates but cannot dissolve prions or be potentiated by activating mutations. We define how Hsp104(ΔN) invariably stimulates Sup35 prionogenesis by fragmenting prions without solubilizing Sup35, whereas Hsp104 couples Sup35 prion fragmentation and dissolution. Volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (hydrolysis transition state mimic), and ADP via small-angle X-ray scattering revealed a peristaltic pumping motion upon ATP hydrolysis, which drives directional substrate translocation through the central Hsp104 channel and is profoundly altered in Hsp104(ΔN). We establish that the Hsp104 NTD enables cooperative substrate translocation, which is critical for prion dissolution and potentiated disaggregase activity.


Prion | 2015

Engineering enhanced protein disaggregases for neurodegenerative disease

Meredith E. Jackrel; James Shorter

Abstract Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinsons disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.


Protein Science | 2009

Redesign of a protein–peptide interaction: Characterization and applications

Meredith E. Jackrel; Roberto Valverde; Lynne Regan

The design of protein–peptide interactions has a wide array of practical applications and also reveals insight into the basis for molecular recognition. Here, we present the redesign of a tetratricopeptide repeat (TPR) protein scaffold, along with its corresponding peptide ligand. We show that the binding properties of these protein–peptide pairs can be understood, quantitatively, using straightforward chemical considerations. The recognition pairs we have developed are also practically useful for the specific identification of tagged proteins. We demonstrate the facile replacement of these proteins, which we have termed T‐Mods (TPR‐based recognition module), for antibodies in both detection and purification applications. The new protein–peptide pair has a dissociation constant that is weaker than typical antibody–antigen interactions, yet the recognition pair is highly specific and we have shown that this affinity is sufficient for both Western blotting and affinity purification. Moreover, we demonstrate that this more moderate affinity is actually advantageous for purification applications, because extremely harsh conditions are not required to dissociate the T‐Mod‐peptide interaction. The results we present are important, not only because they represent a successful application of protein design but also because they help define the properties that should be sought in other scaffolds that are being developed as antibody replacements.


Nature Structural & Molecular Biology | 2016

Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation.

Adam L. Yokom; Stephanie N. Gates; Meredith E. Jackrel; Korrie L. Mack; Min Su; James Shorter; Daniel R. Southworth

Hsp104, a conserved AAA+ protein disaggregase, promotes survival during cellular stress. Hsp104 remodels amyloids, thereby supporting prion propagation, and disassembles toxic oligomers associated with neurodegenerative diseases. However, a definitive structural mechanism for its disaggregase activity has remained elusive. We determined the cryo-EM structure of wild-type Saccharomyces cerevisiae Hsp104 in the ATP state, revealing a near-helical hexamer architecture that coordinates the mechanical power of the 12 AAA+ domains for disaggregation. An unprecedented heteromeric AAA+ interaction defines an asymmetric seam in an apparent catalytic arrangement that aligns the domains in a two-turn spiral. N-terminal domains form a broad channel entrance for substrate engagement and Hsp70 interaction. Middle-domain helices bridge adjacent protomers across the nucleotide pocket, thus explaining roles in ATP hydrolysis and protein disaggregation. Remarkably, substrate-binding pore loops line the channel in a spiral arrangement optimized for substrate transfer across the AAA+ domains, thereby establishing a continuous path for polypeptide translocation.


Disease Models & Mechanisms | 2014

Potentiated Hsp104 variants suppress toxicity of diverse neurodegenerative disease- linked proteins

Meredith E. Jackrel; James Shorter

Protein misfolding is implicated in numerous lethal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD). There are no therapies that reverse these protein-misfolding events. We aim to apply Hsp104, a hexameric AAA+ protein from yeast, to target misfolded conformers for reactivation. Hsp104 solubilizes disordered aggregates and amyloid, but has limited activity against human neurodegenerative disease proteins. Thus, we have previously engineered potentiated Hsp104 variants that suppress aggregation, proteotoxicity and restore proper protein localization of ALS and PD proteins in Saccharomyces cerevisiae, and mitigate neurodegeneration in an animal PD model. Here, we establish that potentiated Hsp104 variants possess broad substrate specificity and, in yeast, suppress toxicity and aggregation induced by wild-type TDP-43, FUS and α-synuclein, as well as missense mutant versions of these proteins that cause neurodegenerative disease. Potentiated Hsp104 variants also rescue toxicity and aggregation of TAF15 but not EWSR1, two RNA-binding proteins with a prion-like domain that are connected with the development of ALS and frontotemporal dementia. Thus, potentiated Hsp104 variants are not entirely non-specific. Indeed, they do not unfold just any natively folded protein. Rather, potentiated Hsp104 variants are finely tuned to unfold proteins bearing short unstructured tracts that are not recognized by wild-type Hsp104. Our studies establish the broad utility of potentiated Hsp104 variants.


Science | 2017

Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104

Stephanie N. Gates; Adam L. Yokom; JiaBei Lin; Meredith E. Jackrel; Alexandrea N. Rizo; Nathan M. Kendsersky; Courtney E. Buell; Elizabeth A. Sweeny; Korrie L. Mack; Edward Chuang; Mariana P. Torrente; Min Su; James Shorter; Daniel R. Southworth

Untangling aggregates one step at a time Conserved AAA+ protein complexes exploit adenosine triphosphate hydrolysis to unfold and disaggregate their substrates in response to cell stress, but exactly how they do this has been unclear. Gates et al. determined high-resolution cryo-electron microscopy structures of the Hsp104 disaggregase bound to an unfolded polypeptide substrate in its channel. The structures reveal substrate interactions and two different translocation states. Hsp104 undergoes conformational changes that drive movement along the substrate by two-amino-acid steps. These states help explain how this molecular machine can solubilize protein aggregates and amyloids. Science, this issue p. 273 Cryo–electron microscopy structures of an AAA+ machine reveal details of the mechanism used for substrate protein disaggregation. Hsp100 polypeptide translocases are conserved members of the AAA+ family (adenosine triphosphatases associated with diverse cellular activities) that maintain proteostasis by unfolding aberrant and toxic proteins for refolding or proteolytic degradation. The Hsp104 disaggregase from Saccharomyces cerevisiae solubilizes stress-induced amorphous aggregates and amyloids. The structural basis for substrate recognition and translocation is unknown. Using a model substrate (casein), we report cryo–electron microscopy structures at near-atomic resolution of Hsp104 in different translocation states. Substrate interactions are mediated by conserved, pore-loop tyrosines that contact an 80-angstrom-long unfolded polypeptide along the axial channel. Two protomers undergo a ratchet-like conformational change that advances pore loop–substrate interactions by two amino acids. These changes are coupled to activation of specific nucleotide hydrolysis sites and, when transmitted around the hexamer, reveal a processive rotary translocation mechanism and substrate-responsive flexibility during Hsp104-catalyzed disaggregation.


Cell Cycle | 2014

Reversing deleterious protein aggregation with re-engineered protein disaggregases

Meredith E. Jackrel; James Shorter

Aberrant protein folding is severely problematic and manifests in numerous disorders, including amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington disease (HD), and Alzheimer disease (AD). Patients with each of these disorders are characterized by the accumulation of mislocalized protein deposits. Treatments for these disorders remain palliative, and no available therapeutics eliminate the underlying toxic conformers. An intriguing approach to reverse deleterious protein misfolding is to upregulate chaperones to restore proteostasis. We recently reported our work to re-engineer a prion disaggregase from yeast, Hsp104, to reverse protein misfolding implicated in human disease. These potentiated Hsp104 variants suppress TDP-43, FUS, and α-synuclein toxicity in yeast, eliminate aggregates, reverse cellular mislocalization, and suppress dopaminergic neurodegeneration in an animal model of PD. Here, we discuss this work and its context, as well as approaches for further developing potentiated Hsp104 variants for application in reversing protein-misfolding disorders.


Journal of Cell Biology | 2017

FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination

Kyota Yasuda; Sarah F. Clatterbuck-Soper; Meredith E. Jackrel; James Shorter; Stavroula Mili

Cytoplasmic inclusions of the RNA-binding protein fused in sarcoma (FUS) represent one type of membraneless ribonucleoprotein compartment. Formation of FUS inclusions is promoted by amyotrophic lateral sclerosis (ALS)–linked mutations, but the cellular functions affected upon inclusion formation are poorly defined. In this study, we find that FUS inclusions lead to the mislocalization of specific RNAs from fibroblast cell protrusions and neuronal axons. This is mediated by recruitment of kinesin-1 mRNA and protein within FUS inclusions, leading to a loss of detyrosinated glutamate (Glu)–microtubules (MTs; Glu-MTs) and an inability to support the localization of RNAs at protrusions. Importantly, dissolution of FUS inclusions using engineered Hsp104 disaggregases, or overexpression of kinesin-1, reverses these effects. We further provide evidence that kinesin-1 affects MT detyrosination not through changes in MT stability, but rather through targeting the tubulin carboxypeptidase enzyme onto specific MTs. Interestingly, other pathological inclusions lead to similar outcomes, but through apparently distinct mechanisms. These results reveal a novel kinesin-dependent mechanism controlling the MT cytoskeleton and identify loss of Glu-MTs and RNA mislocalization as common outcomes of ALS pathogenic mutations.

Collaboration


Dive into the Meredith E. Jackrel's collaboration.

Top Co-Authors

Avatar

James Shorter

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

JiaBei Lin

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Sochor

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Aaron L. Lucius

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge