Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Meredith Wilson is active.

Publication


Featured researches published by Meredith Wilson.


Cell | 1999

Germline Mutations in the Extracellular Domains of the 55 kDa TNF Receptor, TNFR1, Define a Family of Dominantly Inherited Autoinflammatory Syndromes

Michael F. McDermott; Ivona Aksentijevich; Jérôme Galon; Elizabeth McDermott; B. William Ogunkolade; Michael Centola; Elizabeth Mansfield; Massimo Gadina; Leena Karenko; Tom Pettersson; John McCarthy; David M. Frucht; Martin Aringer; Yelizaveta Torosyan; Anna-Maija Teppo; Meredith Wilson; H.Mehmet Karaarslan; Ying Wan; Ian Todd; Geryl Wood; Ryan Schlimgen; Thisum R. Kumarajeewa; Sheldon M. Cooper; John P. Vella; Christopher I. Amos; John C. Mulley; Kathleen A. Quane; Michael G. Molloy; Annamari Ranki; Richard J. Powell

Autosomal dominant periodic fever syndromes are characterized by unexplained episodes of fever and severe localized inflammation. In seven affected families, we found six different missense mutations of the 55 kDa tumor necrosis factor receptor (TNFR1), five of which disrupt conserved extracellular disulfide bonds. Soluble plasma TNFR1 levels in patients were approximately half normal. Leukocytes bearing a C52F mutation showed increased membrane TNFR1 and reduced receptor cleavage following stimulation. We propose that the autoinflammatory phenotype results from impaired downregulation of membrane TNFR1 and diminished shedding of potentially antagonistic soluble receptor. TNFR1-associated periodic syndromes (TRAPS) establish an important class of mutations in TNF receptors. Detailed analysis of one such mutation suggests impaired cytokine receptor clearance as a novel mechanism of disease.


American Journal of Human Genetics | 2007

Mutations in Cohesin Complex Members SMC3 and SMC1A Cause a Mild Variant of Cornelia de Lange Syndrome with Predominant Mental Retardation

Matthew A. Deardorff; Maninder Kaur; Dinah Yaeger; Abhinav Rampuria; Sergey Korolev; Juan Pié; Concepcion Gil-Rodríguez; María Teresa Echeverría Arnedo; Bart Loeys; Antonie D. Kline; Meredith Wilson; Kaj Lillquist; Victoria M. Siu; Feliciano J. Ramos; Antonio Musio; Laird S. Jackson; Dale Dorsett; Ian D. Krantz

Mutations in the cohesin regulators NIPBL and ESCO2 are causative of the Cornelia de Lange syndrome (CdLS) and Roberts or SC phocomelia syndrome, respectively. Recently, mutations in the cohesin complex structural component SMC1A have been identified in two probands with features of CdLS. Here, we report the identification of a mutation in the gene encoding the complementary subunit of the cohesin heterodimer, SMC3, and 14 additional SMC1A mutations. All mutations are predicted to retain an open reading frame, and no truncating mutations were identified. Structural analysis of the mutant SMC3 and SMC1A proteins indicate that all are likely to produce functional cohesin complexes, but we posit that they may alter their chromosome binding dynamics. Our data indicate that SMC3 and SMC1A mutations (1) contribute to approximately 5% of cases of CdLS, (2) result in a consistently mild phenotype with absence of major structural anomalies typically associated with CdLS, and (3) in some instances, result in a phenotype that approaches that of apparently nonsyndromic mental retardation.


Journal of Medical Genetics | 1998

Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features: delineation of a new syndrome and identification of a locus at chromosome 2q22-q23.

David Mowat; G. D. H. Croaker; D. T. Cass; Bronwyn Kerr; J. Chaitow; Lesley C. Adès; Nicole Chia; Meredith Wilson

We have identified six children with a distinctive facial phenotype in association with mental retardation (MR), microcephaly, and short stature, four of whom presented with Hirschsprung (HSCR) disease in the neonatal period. HSCR was diagnosed in a further child at the age of 3 years after investigation for severe chronic constipation and another child, identified as sharing the same facial phenotype, had chronic constipation, but did not have HSCR. One of our patients has an interstitial deletion of chromosome 2, del(2)(q21q23). These children strongly resemble the patient reported by Lurie et al with HSCR and dysmorphic features associated with del(2)(q22q23). All patients have been isolated cases, suggesting a contiguous gene syndrome or a dominant single gene disorder involving a locus for HSCR located at 2q22-q23. Review of published reports suggests that there is significant phenotypic and genetic heterogeneity within the group of patients with HSCR, MR, and microcephaly. In particular, our patients appear to have a separate disorder from Goldberg-Shprintzen syndrome, for which autosomal recessive inheritance has been proposed because of sib recurrence and consanguinity in some families.


Journal of Medical Genetics | 2003

Mowat-Wilson syndrome.

David Mowat; Meredith Wilson; Michel Goossens

MWS is a multiple congenital anomaly syndrome, first clinically delineated by Mowat et al in 1998. Over 45 cases have now been reported. All patients have typical dysmorphic features in association with severe intellectual disability, and nearly all have microcephaly and seizures. Congenital anomalies, including Hirschsprung disease (HSCR), congenital heart disease, hypospadias, genitourinary anomalies, agenesis of the corpus callosum, and short stature are common. The syndrome is the result of heterozygous deletions or truncating mutations of the ZFHX1B (SIP1) gene on chromosome 2q22.


Journal of Medical Genetics | 2009

Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype

Tjitske Kleefstra; W.A.G. van Zelst-Stams; Willy M. Nillesen; Valérie Cormier-Daire; Gunnar Houge; Nicola Foulds; M.F. van Dooren; Marjolein H. Willemsen; Rolph Pfundt; Anne Turner; Meredith Wilson; Julie McGaughran; Anita Rauch; Martin Zenker; Margaret P Adam; M Innes; C Davies; A González-Meneses López; R Casalone; A Weber; Louise Brueton; A Delicado Navarro; M Palomares Bralo; Hanka Venselaar; S P A Stegmann; Helger G. Yntema; H. van Bokhoven; Han G. Brunner

Background: The 9q subtelomeric deletion syndrome (9qSTDS) is clinically characterised by moderate to severe mental retardation, childhood hypotonia and facial dysmorphisms. In addition, congenital heart defects, urogenital defects, epilepsy and behavioural problems are frequently observed. The syndrome can be either caused by a submicroscopic 9q34.3 deletion or by intragenic EHMT1 mutations leading to haploinsufficiency of the EHMT1 gene. So far it has not been established if and to what extent other genes in the 9q34.3 region contribute to the phenotype observed in deletion cases. This study reports the largest cohort of 9qSTDS cases so far. Methods and results: By a multiplex ligation dependent probe amplification (MLPA) approach, the authors identified and characterised 16 novel submicroscopic 9q deletions. Direct sequence analysis of the EHMT1 gene in 24 patients exhibiting the 9qSTD phenotype without such deletion identified six patients with an intragenic EHMT1 mutation. Five of these mutations predict a premature termination codon whereas one mutation gives rise to an amino acid substitution in a conserved domain of the protein. Conclusions: The data do not provide any evidence for phenotype–genotype correlations between size of the deletions or type of mutations and severity of clinical features. Therefore, the authors confirm the EHMT1 gene to be the major determinant of the 9qSTDS phenotype. Interestingly, five of six patients who had reached adulthood had developed severe psychiatric pathology, which may indicate that EHMT1 haploinsufficiency is associated with neurodegeneration in addition to neurodevelopmental defect.


PLOS Genetics | 2010

Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus.

Evelyn N. Kouwenhoven; Simon J. van Heeringen; Juan J. Tena; Martin Oti; Bas E. Dutilh; M. Eva Alonso; Elisa de la Calle-Mustienes; Leonie Smeenk; Tuula Rinne; Lilian Parsaulian; Emine Bolat; Rasa Jurgelenaite; Martijn A. Huynen; Alexander Hoischen; Joris A. Veltman; Han G. Brunner; Tony Roscioli; Emily C. Oates; Meredith Wilson; Miguel Manzanares; José Luis Gómez-Skarmeta; Hendrik G. Stunnenberg; Marion Lohrum; Hans van Bokhoven; Huiqing Zhou

Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM), orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA–binding profiling by chromatin immunoprecipitation (ChIP), followed by deep sequencing (ChIP–seq) in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes.


Nature Genetics | 2014

A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP

Céline Helsmoortel; Anneke T. Vulto-van Silfhout; Bradley P. Coe; Geert Vandeweyer; Liesbeth Rooms; Jenneke van den Ende; Janneke H M Schuurs-Hoeijmakers; Carlo Marcelis; Marjolein H. Willemsen; Lisenka E.L.M. Vissers; Helger G. Yntema; Madhura Bakshi; Meredith Wilson; Kali Witherspoon; Helena Malmgren; Ann Nordgren; Göran Annerén; Marco Fichera; Paolo Bosco; Corrado Romano; Bert B.A. de Vries; Tjitske Kleefstra; R. Frank Kooy; Evan E. Eichler; Nathalie Van der Aa

Despite the high heritability of autism spectrum disorders (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities, a genetic diagnosis can be established in only a minority of patients. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, as in Rett and fragile-X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next-generation sequencing, for the large majority of cases no molecular diagnosis can be established. Here, we report ten patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD-associated genes known to date.


American Journal of Human Genetics | 1998

Gene Localization for an Autosomal Dominant Familial Periodic Fever to 12p13

John C. Mulley; Kathrin Saar; Gerry Hewitt; Franz Rüschendorf; Hilary A. Phillips; Alison Colley; David Sillence; André Reis; Meredith Wilson

We report gene localization in a family with a benign autosomal dominant familial periodic fever (FPF) syndrome characterized by recurrent fever associated with abdominal pain. The clinical features are similar to the disorder previously described as familial Hibernian fever, and they differ from familial Mediterranean fever (FMF) in that FPF episodes usually do not respond to colchicine and FPF is not associated with amyloidosis. Frequent recombination with the marker D16S2622, <1 Mb from FMF, at 16p13.3, excluded allelism between these clinically similar conditions. Subsequently, a semiautomated genome search detected linkage of FMF to a cluster of markers at 12p13, with a multipoint LOD score of 6.14 at D12S356. If penetrance of 90% is assumed, the FPF gene maps to a 19-cM interval between D12S314 and D12S364; however, if complete penetrance is assumed, then FPF maps to a 9-cM region between D12S314 and D12S1695. This interval includes the dentatorubropallidoluysian atrophy locus, which, with FPF, gave a maximum two-point LOD score of 3.7 at a recombination fraction of 0. This is the first of the periodic-fever genes, other than FMF, to be mapped. Positional candidate genes may now be selected for mutation analysis to determine the molecular basis for FPF. Together with the recent identification of the defective gene in FMF, identification of a gene for FPF might provide new insights into the regulation of inflammatory responses.


Human Genetics | 2004

Mutations of RAI1, a PHD-containing protein, in nondeletion patients with Smith-Magenis syndrome

Weimin Bi; G. Mustafa Saifi; Christine J. Shaw; Katherina Walz; Patricia Fonseca; Meredith Wilson; Lorraine Potocki; James R. Lupski

Smith-Magenis syndrome (SMS) is a mental retardation/multiple congenital anomalies disorder associated with a heterozygous ~4-Mb deletion in 17p11.2. Patients with SMS show variability in clinical phenotype despite a common deletion found in >75–80% of patients. Recently, point mutations in the retinoic acid induced 1 (RAI1) gene, which lies within the SMS critical interval, were identified in three patients with many SMS features in whom no deletion was detected. It is not clear if the entire SMS phenotype can be accounted for by RAI1 haploinsufficiency, nor has the precise function of RAI1 been delineated. We report two novel RAI1 mutations, one frameshift and one nonsense allele, in nondeletion SMS patients. Comparisons of the clinical features in these two patients, three of the previously reported RAI1 point mutation cases, and the patients with a common deletion suggest that the majority of the clinical features in SMS result from RAI1 mutation, although phenotypic variability exists even among the individuals with RAI1 point mutations. Bioinformatics analyses of RAI1 and comparative genomics between human and mouse orthologues revealed a zinc finger-like plant homeo domain (PHD) at the carboxyl terminus that is conserved in the trithorax group of chromatin-based transcription regulators. These findings suggest RAI1 is involved in transcriptional control through a multi-protein complex whose function may be altered in individuals with SMS.


European Journal of Human Genetics | 2013

The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy

Stephanie Fehr; Meredith Wilson; Jennepher Downs; Simon Williams; Alessandra Murgia; Stefano Sartori; Marilena Vecchi; Gladys Ho; Roberta Polli; Stavroula Psoni; Bao Xh; Nicholas de Klerk; Helen Leonard; John Christodoulou

The clinical understanding of the CDKL5 disorder remains limited, with most information being derived from small patient groups seen at individual centres. This study uses a large international data collection to describe the clinical profile of the CDKL5 disorder and compare with Rett syndrome (RTT). Information on individuals with cyclin-dependent kinase-like 5 (CDKL5) mutations (n=86) and females with MECP2 mutations (n=920) was sourced from the InterRett database. Available photographs of CDKL5 patients were examined for dysmorphic features. The proportion of CDKL5 patients meeting the recent Neul criteria for atypical RTT was determined. Logistic regression and time-to-event analyses were used to compare the occurrence of Rett-like features in those with MECP2 and CDKL5 mutations. Most individuals with CDKL5 mutations had severe developmental delay from birth, seizure onset before the age of 3 months and similar non-dysmorphic features. Less than one-quarter met the criteria for early-onset seizure variant RTT. Seizures and sleep disturbances were more common than in those with MECP2 mutations whereas features of regression and spinal curvature were less common. The CDKL5 disorder presents with a distinct clinical profile and a subtle facial, limb and hand phenotype that may assist in differentiation from other early-onset encephalopathies. Although mutations in the CDKL5 gene have been described in association with the early-onset variant of RTT, in our study the majority did not meet these criteria. Therefore, the CDKL5 disorder should be considered separate to RTT, rather than another variant.

Collaboration


Dive into the Meredith Wilson's collaboration.

Top Co-Authors

Avatar

David Mowat

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David Sillence

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin P. Kirk

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Turner

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Hackett

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar

Julie McGaughran

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge