Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merete Bilde is active.

Publication


Featured researches published by Merete Bilde.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions

Neil M. Donahue; Kaytlin M. Henry; Thomas F. Mentel; Astrid Kiendler-Scharr; C. Spindler; Birger Bohn; T. Brauers; Hans P. Dorn; Hendrik Fuchs; R. Tillmann; Andreas Wahner; Harald Saathoff; K.-H. Naumann; O. Möhler; Thomas Leisner; Lars Peter Müller; Marc-Christopher Reinnig; Thorsten Hoffmann; Kent Salo; Mattias Hallquist; Mia Frosch; Merete Bilde; Torsten Tritscher; Peter Barmet; Arnaud P. Praplan; P. F. DeCarlo; Josef Dommen; André S. H. Prévôt; Urs Baltensperger

The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.


Journal of Geophysical Research | 2005

Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol

Kara E. Huff Hartz; Thomas Rosenørn; Shaun R. Ferchak; Timothy M. Raymond; Merete Bilde; Neil M. Donahue; Spyros N. Pandis

[1] The ability of biogenic secondary organic aerosol (SOA) to contribute to the concentration of cloud condensation nuclei (CCN) in the atmosphere is examined. Aerosol is generated by the ozonolysis reaction of monoterpenes (α-pinene, β-pinene, 3-carene, and limonene) and sesquiterpenes (β-caryophyllene, α-humulene, and o-cedrene) in a 10 m 3 temperature-controlled Teflon smog chamber. In some cases, a self-seeding technique is used, which enables high particle concentrations with the desired diameters without compromising particle composition and purity. The monoterpene SOA is excellent CCN material, and it activates similarly (average activation diameter equals 48 ± 8 nm at 1% supersaturation for the species used in this work) to highly water-soluble organic species. Its effective solubility in water was estimated to be in the range of 0.07- 0.40 g solute/g H 2 O. CCN measurements for sesquiterpene SOA (average activation diameter equals 120 ± 20 nm at 1% supersaturation for the species used in this work) show that it is less CCN active than monoterpene SOA. The initial terpene mixing ratio (between 3 and 100 ppb) does not affect the CCN activation for freshly generated SOA.


Journal of Chemical Theory and Computation | 2012

Assessment of Density Functional Theory in Predicting Structures and Free Energies of Reaction of Atmospheric Prenucleation Clusters

Jonas Elm; Merete Bilde; Kurt V. Mikkelsen

This work assesses different computational strategies for predicting structures and Gibbs free energies of reaction of atmospheric prenucleation clusters. The performance of 22 Density Functional Theory functionals in predicting equilibrium structures of molecules and water prenucleation clusters of atmospheric relevance is evaluated against experimental data using a test set of eight molecules and prenucleation clusters: SO2, H2SO4, CO2·H2O, CS2·H2O, OCS·H2O, SO2·H2O, SO3·H2O, and H2SO4·H2O. Furthermore, the functionals are tested and compared for their ability to predict the free energy of reaction for the formation of five benchmark atmospheric prenucleation clusters: H2SO4·H2O, H2SO4·(H2O)2, H2SO4·NH3, HSO4(-)·H2O, and HSO4(-)·(H2O)2. The performance is evaluated against experimental data, coupled cluster, and complete basis set extrapolation procedure methods. Our investigation shows that the utilization of the M06-2X functional with the 6-311++G(3df,3pd) basis set represents an improved approach compared to the conventionally used PW91 functional, yielding mean absolute errors of 0.48 kcal/mol and maximum errors of 0.67 kcal/mol compared to experimental results.


Journal of Geophysical Research | 2010

Soluble Mass, Hygroscopic Growth, and Droplet Activation of Coated Soot Particles during LACIS Experiment in November (LExNo)

S. Henning; Heike Wex; T. Hennig; Alexei Kiselev; Jefferson R. Snider; D. Rose; U. Dusek; Göran Frank; Ulrich Pöschl; Adam Kristensson; Merete Bilde; R. Tillmann; Astrid Kiendler-Scharr; Thomas F. Mentel; S. Walter; J. Schneider; C. Wennrich; Frank Stratmann

The LACIS Experiment in November (LExNo) campaign was conducted in November 2005 at the Atmospheric Composition Change the European Network of Excellence (ACCENT) site Leipzig Aerosol Cloud Interaction Simulator (LACIS). The goal of LExNo was to provide deeper insight into the activation properties of coated soot particles imitating aged combustion aerosol particles. The aerosols were prepared by starting with spark-generated soot particles. In some experiments the soot particles were compacted by exposure to propanol vapor; in others this step was bypassed. The soot was thermally coated with ammonium sulfate, levoglucosan, or a mixture of both ammonium sulfate and levoglucosan. The synthesized particles were investigated using aerosol mass spectrometry, a Hygroscopicity Tandem differential mobility analyzer, two Wyoming static diffusion cloud condensation nuclei (CCN) instruments, a Droplet Measurement Technologies continuous flow CCN instrument, and LACIS. A close correlation between the hygroscopic growth factor at 98% relative humidity and the critical supersaturation of CCN activation was observed. Closure between hygroscopic growth, CCN activation, and chemical composition of the investigated particles was achieved with two different single-parameter Kohler model approaches and with a third approach, a standard Kohler model using as input parameter the soluble mass as determined by aerosol mass spectrometry. (Less)


Chemical Reviews | 2015

Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures

Merete Bilde; Kelley C. Barsanti; Murray Booth; Christopher D. Cappa; Neil M. Donahue; Eva U. Emanuelsson; Gordon McFiggans; Ulrich K. Krieger; Claudia Marcolli; David Topping; Paul J. Ziemann; Mark H. Barley; Simon L. Clegg; Benjamin J. Dennis-Smither; Mattias Hallquist; Åsa M. Hallquist; Andrey Khlystov; Markku Kulmala; D. Mogensen; Carl J. Percival; Francis D. Pope; Jonathan P. Reid; M. A. V. Ribeiro da Silva; Thomas Rosenoern; Kent Salo; V. Soonsin; Taina Yli-Juuti; N. L. Prisle; Joakim Pagels; Juergen Rarey

There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.


Tellus B | 2008

Surfactant partitioning in cloud droplet activation : a study of C8, C10, C12 and C14 normal fatty acid sodium salts

Nxønne L. Prisle; Tomi Raatikainen; Riikka Sorjamaa; Birgitta Svenningsson; Ari Laaksonen; Merete Bilde

We have measured critical supersaturations of dried single-component particles of sodium caprylate [CH3(CH2)6COONa], sodium caprate [CH3(CH2)8COONa], sodium laurate [CH3(CH2)10COONa] and sodium myristate [CH3(CH2)12COONa] in the diameter range 33–140 nm at 296 K using a static thermal gradient diffusion cloud condensation nucleus counter. These fatty acid sodium salts are surface active molecules which have all been identified in atmospheric aerosol particles. Experimental critical supersaturations increased systematically with increasing carbon chain length and were in the range 0.96–1.34% for particles with a dry diameter of 40 nm. The experimental data were modelled using Köhler theory modified to account for partitioning of the surface active fatty acid sodium salts between the droplet bulk and surface as well as Köhler theory including surface tension reduction without accounting for surfactant partitioning and Köhler theory using the surface tension of pure water. It was found that Köhler theory using the reduced surface tension with no account for surfactant partitioning underpredicts experimental critical supersaturations significantly, whereas Köhler theory modified to account for surfactant partitioning and Köhler theory using the surface tension of pure water reproduced the experimental data well.


Journal of Physical Chemistry A | 2014

Molecular Interaction of Pinic Acid with Sulfuric Acid: Exploring the Thermodynamic Landscape of Cluster Growth

Jonas Elm; Theo Kurtén; Merete Bilde; Kurt V. Mikkelsen

We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated from the corresponding ΔG values. The first two additions of sulfuric acid to pinic acid are found to be favorable with ΔG values of -9.06 and -10.41 kcal/mol. Addition of a third sulfuric acid molecule is less favorable and leads to a structural rearrangement forming a bridged sulfuric acid-pinic acid cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures without the further possibility for attachment of either sulfuric acid or pinic acid. This suggests that pinic acid cannot be a key species in the first steps in nucleation, but the favorable interactions between sulfuric acid and pinic acid imply that pinic acid can contribute to the subsequent growth of an existing nucleus by condensation.


Journal of Physical Chemistry A | 2013

Influence of nucleation precursors on the reaction kinetics of methanol with the OH radical.

Jonas Elm; Merete Bilde; Kurt V. Mikkelsen

The mechanism and kinetics of the reaction of methanol with the OH radical in the absence and presence of common atmospheric nucleation precursors (H2O, NH3, and H2SO4) have been investigated using different computational methods. The statistical Gibbs free energy of formation has been calculated using M06-2X/6-311++G(3df,3pd) in order to assess cluster stability. Methanol is found to have an unfavorable interaction with water and ammonia but form stable complexes with sulfuric acid. The reaction kinetics with the OH radical and methanol with or without the presence of nucleation precursors has been studied using a CCSD(T)-F12a/VDZ-F12//BH&HLYP/aug-cc-pVTZ∥Eckart methodology, and it is found that the presence of water is unlikely to change the overall reaction rate and mechanism of hydrogen abstraction from methanol. Ammonia is able to both enhance the reaction rate and change the reaction mechanism, but due to a very weak interaction with methanol, this process is unlikely to occur under atmospheric conditions. Sulfuric acid is, in contrast, found to be able to act as a stabilizing factor for methanol and is able to change the reaction mechanism. These findings show the first indications that nucleation precursors such as ammonia and sulfuric acid are able to alter the reaction mechanism of an atmospherically relevant organic compound.


Environmental Science & Technology | 2012

Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles.

Stephanie King; Andrew C. Butcher; Thomas Rosenoern; Esther Coz; Kirsten I. Lieke; Gerrit de Leeuw; E. Douglas Nilsson; Merete Bilde

Sea spray particles ejected as a result of bubbles bursting from artificial seawater containing salt and organic matter in a stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. Bubbles were generated either by aeration through a diffuser or by water jet impingement on the seawater surface. Three objectives were addressed in this study. First, CCN activities of NaCl and two types of artificial sea salt containing only inorganic components were measured to establish a baseline for further measurements of mixed organic–inorganic particles. Second, the effect of varying bubble residence time in the bulk seawater solution on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. Finally, CCN activities of particles produced from jet impingement were compared with those produced from diffuser aeration. Analyses indicate a considerable amount of organic enrichment in the jet-produced particles relative to the bulk seawater composition when sodium laurate, an organic surfactant, is present in the seawater. In this case, the production of a thick foam layer during impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not equal.


Journal of Geophysical Research | 2014

On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet

Matthew Salter; E. D. Nilsson; A. Butcher; Merete Bilde

Breaking waves on the ocean surface produce bubbles which, upon bursting, deliver seawater constituents into the atmosphere as sea spray aerosol particles. One way of investigating this process in the laboratory is to generate a bubble plume by a continuous plunging jet. We performed a series of laboratory experiments to elucidate the role of seawater temperature on aerosol production from artificial seawater free from organic contamination using a plunging jet. The seawater temperature was varied from −1.3°C to 30.1°C, while the volume of air entrained by the jet, surface bubble size distributions, and size distribution of the aerosol particles produced was monitored. We observed that the volume of air entrained decreased as the seawater temperature was increased. The number of surface bubbles with film radius smaller than 2 mm decreased nonlinearly with seawater temperature. This decrease was coincident with a substantial reduction in particle production. The number concentrations of particles with dry diameter less than ∼1 μm decreased substantially as the seawater temperature was increased from −1.3°C to ∼9°C. With further increase in seawater temperature (up to 30°C), a small increase in the number concentration of larger particles (dry diameter >∼0.3 μm) was observed. Based on these observations, we infer that as seawater temperature increases, the process of bubble fragmentation changes, resulting in decreased air entrainment by the plunging jet, as well as the number of bubbles with film radius smaller than 2 mm. This again results in decreased particle production with increasing seawater temperature.

Collaboration


Dive into the Merete Bilde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge