Merete Bugge
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Merete Bugge.
Nature | 1999
Guoliang Xu; Timothy H. Bestor; Déborah Bourc'his; Chih-Lin Hsieh; Niels Tommerup; Merete Bugge; Maj Hulten; Xiaoyan Qu; James J. Russo; Evani Viegas‐Péquignot
The recessive autosomal disorder known as ICF syndrome (for immunodeficiency, centromere instability and facial anomalies; Mendelian Inheritance in Man number 242860) is characterized by variable reductions in serum immunoglobulin levels which cause most ICF patients to succumb to infectious diseases before adulthood. Mild facial anomalies include hypertelorism, low-set ears, epicanthal folds and macroglossia. The cytogenetic abnormalities in lymphocytes are exuberant: juxtacentromeric heterochromatin is greatly elongated and thread-like in metaphase chromosomes, which is associated with the formation of complex multiradiate chromosomes. The same juxtacentromeric regions are subject to persistent interphase self-associations and are extruded into nuclear blebs or micronuclei. Abnormalities are largely confined to tracts of classical satellites 2 and 3 at juxtacentromeric regions of chromosomes 1, 9 and 16. Classical satellite DNA is normally heavily methylated at cytosine residues, but in ICF syndrome it is almost completely unmethylated in all tissues. ICF syndrome is the only genetic disorder known to involve constitutive abnormalities of genomic methylation patterns. Here we show that five unrelated ICF patients have mutations in both alleles of the gene that encodes DNA methyltransferase 3B (refs 5, 6). Cytosine methylation is essential for the organization and stabilization of a specific type of heterochromatin, and this methylation appears to be carried out by an enzyme specialized for the purpose.
Human Genetics | 2007
Vera M. Kalscheuer; David Fitzpatrick; Niels Tommerup; Merete Bugge; Erik Niebuhr; Luitgard M. Neumann; Andreas Tzschach; Sarah A. Shoichet; Corinna Menzel; Fikret Erdogan; Ger J. A. Arkesteijn; Hans-Hilger Ropers; Reinhard Ullmann
We report on three unrelated mentally disabled patients, each carrying a de novo balanced translocation that truncates the autism susceptibility candidate 2 (AUTS2) gene at 7q11.2. One of our patients shows relatively mild mental retardation; the other two display more profound disorders. One patient is also physically disabled, exhibiting urogenital and limb malformations in addition to severe mental retardation. The function of AUTS2 is presently unknown, but it has been shown to be disrupted in monozygotic twins with autism and mental retardation, both carrying a translocation t(7;20)(q11.2;p11.2) (de la Barra et al. in Rev Chil Pediatr 57:549–554, 1986; Sultana et al. in Genomics 80:129–134, 2002). Given the overlap of this autism/mental retardation (MR) phenotype and the MR-associated disorders in our patients, together with the fact that mapping of the additional autosomal breakpoints involved did not disclose obvious candidate disease genes, we ascertain with this study that AUTS2 mutations are clearly linked to autosomal dominant mental retardation.
Journal of Medical Genetics | 1999
Jutta Wirth; Hans Gerd Nothwang; S.M. van der Maarel; Corinna Menzel; G. Borck; Isidora Lopez-Pajares; Karen Brøndum-Nielsen; Niels Tommerup; Merete Bugge; Hh Ropers; Thomas Haaf
Disease associated balanced chromosome rearrangements (DBCRs) have been instrumental in the isolation of many disease genes. To facilitate the molecular cytogenetic characterisation of DBCRs, we have generated a set of >1200 non-chimeric, cytogenetically and genetically anchored CEPH YACs, on average one per 3 cM, spaced over the entire human genome. By fluorescence in situ hybridisation (FISH), we have performed a systematic search for YACs spanning translocation breakpoints. Patients with DBCRs and either syndromic or non-syndromic mental retardation (MR) were ascertained through the Mendelian Cytogenetics Network (MCN), a collaborative effort of, at present, 270 cytogenetic laboratories throughout the world. In this pilot study, we have characterised 10 different MR associated chromosome regions delineating candidate regions for MR. Five of these regions are narrowed to breakpoint spanning YACs, three of which are located on chromosomes 13q21, 13q22, and 13q32, respectively, one on chromosome 4p14, and one on 6q25. In two out of six DBCRs, we found cytogenetically cryptic deletions of 3-5 Mb on one or both translocation chromosomes. Thus, cryptic deletions may be an important cause of disease in seemingly balanced chromosome rearrangements that are associated with a disease phenotype. Our region specific FISH probes, which are available to MCN members, can be a powerful tool in clinical cytogenetics and positional cloning.
The Cleft Palate-Craniofacial Journal | 2005
Linda P. Jakobsen; Mary A. Knudsen; James Lespinasse; Carmen Ayuso; Carmen Ramos; Jean-Pierre Fryns; Merete Bugge; Niels Tommerup
Objective The Pierre Robin Sequence (PRS) is subgroup of the cleft palate population. As with the etiology of cleft lip or palate, the etiology of PRS is generally unknown. Some factors are suggestive of a genetic basis for PRS. The purpose of this study was to compare genetic information on PRS available in the literature and in a cytogenetic database to facilitate focused genetic studies of PRS. Design After searching Medline for “pierre robin and genetics,” the Mendelian Cytogenetics Network database for “robin” and “pierre robin,” and two reviews from the Human Cytogenetics Database for “cleft palate” and “micrognathia,” a comparison of the data and a search in Online Mendelian Inheritance in Man (OMIM) Gene Map was performed to identify relevant candidate genes. Results The findings revealed consistency to a certain degree to loci 2q24.1-33.3, 4q32-qter, 11q21-23.1, and 17q21-24.3. A search in the OMIM Gene Map provided many candidate genes for PRS in these regions. The GAD67 on 2q31, the PVRL1 on 11q23-q24, and the SOX9 gene on 17q24.3-q25.1 are suggested to be of particular importance. Conclusion Candidate loci and a few potential candidate genes for PRS are proposed from the present study. This may enable researchers to focus their effort in the studies of PRS.
European Journal of Human Genetics | 1998
Georgia Karadima; Merete Bugge; Peter Nicolaidis; Dimitris Vassilopoulos; Dimitris Avramopoulos; Maria Grigoriadou; Beate Albrecht; Eberhard Passarge; Göran Annerén; Elisabeth Blennow; Niels Clausen; Angeliki Galla-Voumvouraki; Aspasia Tsezou; Sofia Kitsiou-Tzeli; Johanne M D Hahnemann; Jens Michael Hertz; Gunnar Houge; Miloslav Kuklík; Milan Macek; Didier Lacombe; Konstantin Miller; Anne Moncla; I López Pajares; Philippos C. Patsalis; M Prieur; Michel Vekemans; Gabriela von Beust; Karen Brøndum-Nielsen; Michael B. Petersen
Causes of chromosomal nondisjunction is one of the remaining unanswered questions in human genetics. In order to increase our understanding of the mechanisms underlying nondisjunction we have performed a molecular study on trisomy 8 and trisomy 8 mosaicism. We report the results on analyses of 26 probands (and parents) using 19 microsatellite DNA markers mapping along the length of chromosome 8. The 26 cases represented 20 live births, four spontaneous abortions, and two prenatal diagnoses (CVS). The results of the nondisjunction studies show that 20 cases (13 maternal, 7 paternal) were probably due to mitotic (postzygotic) duplication as reduction to homozygosity of all informative markers was observed and as no third allele was ever detected. Only two cases from spontaneous abortions were due to maternal meiotic nondisjunction. In four cases we were not able to detect the extra chromosome due to a low level of mosaicism. These results are in contrast to the common autosomal trisomies (including mosaics), where the majority of cases are due to errors in maternal meiosis.
European Journal of Human Genetics | 2004
Iben Bache; Elvire Van Assche; Sultan Cingöz; Merete Bugge; Zeynep Tümer; Mads F. Hjorth; Claes Lundsteen; James Lespinasse; Kirsten Winther; Anita Niebuhr; Vera M. Kalscheuer; Inge Liebaers; Maryse Bonduelle; Herman Tournaye; Carmen Ayuso; Gotthold Barbi; Elisabeth Blennow; Georges Bourrouillou; Karen Brøndum-Nielsen; Gert Bruun-Petersen; Marie-Françoise Croquette; Sophie Dahoun; Bruno Dallapiccola; Val Davison; Bruno Delobel; Hans-Christoph Duba; Laurence Duprez; Malcolm A. Ferguson-Smith; David Fitzpatrick; Elizabeth Grace
In a search for potential infertility loci, which might be revealed by clustering of chromosomal breakpoints, we compiled 464 infertile males with a balanced rearrangement from Mendelian Cytogenetics Network database (MCNdb) and compared their karyotypes with those of a Danish nation-wide cohort. We excluded Robertsonian translocations, rearrangements involving sex chromosomes and common variants. We identified 10 autosomal bands, five of which were on chromosome 1, with a large excess of breakpoints in the infertility group. Some of these could potentially harbour a male-specific infertility locus. However, a general excess of breakpoints almost everywhere on chromosome 1 was observed among the infertile males: 26.5 versus 14.5% in the cohort. This excess was observed both for translocation and inversion carriers, especially pericentric inversions, both for published and unpublished cases, and was significantly associated with azoospermia. The largest number of breakpoints was reported in 1q21; FISH mapping of four of these breakpoints revealed that they did not involve the same region at the molecular level. We suggest that chromosome 1 harbours a critical domain whose integrity is essential for male fertility.
European Journal of Human Genetics | 2000
Maria Kirchhoff; Hanne Rose; Jan Maahr; Tommy Gerdes; Merete Bugge; Niels Tommerup; Zeynep Tümer; James Lespinasse; Peter Ka Jensen; Jutta Wirth; Claes Lundsteen
A sensitive technique is needed for screening whole genome imbalances in dyschromosomal patients when G-banding shows normal karyotypes or apparently balanced translocations. In this study we performed highly sensitive comparative genomic hybridisation analysis on a number of such cases and revealed chromosomal imbalances in all.
European Journal of Human Genetics | 1996
Merete Bugge; Elisabeth Blennow; Ursula Friedrich; Michael B. Petersen; Florence Pedeutour; Aspasia Tsezou; Alena Ørum; Stig Hermann; Troels Lyngbye; Catherine Sarri; Dimitrios Avramopoulos; Sofia Kitsiou; Jean Claude Lambert; Michèle Guzda; Niels Tommerup; Karen Brøndum-Nielsen
We have used eight PCR-based DNA polymorphisms to determine the parental origin and mechanisms of formation in 9 patients with de novo nonmosaic tetrasomy 18p. The 9 patients, 4 girls and 5 boys, had clinical features characteristic of i(18p) syndrome. The supernumerary marker chromosome was identified by fluorescence in situ hybridization (FISH) analysis using centromeric probes and a flow-sorted 18p-specific library. The isochromosome was of maternal origin in all 9 cases. The formation of tetrasomy 18p cannot be explained by a single model. In 6 cases, meiosis II nondisjunction, followed by subsequent postzygotic misdivsion, and in 1 case postzygotic nondisjunction and postzygotic misdivision were the most likely mechanisms of formation. Alternative mechanisms are suggested in the remaining 2 cases.
European Journal of Human Genetics | 2006
Iben Bache; Mads F. Hjorth; Merete Bugge; Søren Holstebroe; Jørgen Hilden; Lone Schmidt; Karen Brøndum-Nielsen; Gert Bruun-Petersen; Peter Jensen; Claes Lundsteen; Erik Niebuhr; Kirsten Wølch Rasmussen; Niels Tommerup
Balanced reciprocal translocations associated with genetic disorders have facilitated the identification of a variety of genes for early-onset monogenic disorders, but only rarely the genes associated with common and complex disorders. To assess the potential of chromosomal breakpoints associated with common/ complex disorders, we investigated the full spectrum of diseases in 731 carriers of balanced reciprocal translocations without known early-onset disorders in a nation-wide questionnaire-based re-examination. In 42 families, one of the breakpoints at the cytogenetic level concurred with known linkage data and/or the translocation co-segregated with the reported phenotype, for example, we found a significant linkage (lod score=2.1) of dyslexia and a co-segregating translocation with a breakpoint in a previously confirmed locus for dyslexia. Furthermore, we identified 441 instances of at least two unrelated carriers with concordant breakpoints and traits. If applied to other populations, re-examination of translocation carriers may identify additional genotype–phenotype associations, some of which may be novel and others that may coincide with and provide additional support of data presented here.
Human Genetics | 1997
Oliver Bartsch; Georg Klaus Hinkel; Michael B. Petersen; Ulrich König; Merete Bugge; Margareta Mikkelsen; Dimitris Avramopoulos; Michael A. Morris
We describe a 17-month-old infant with clinical features of Down syndrome and a normal karyotype by standard chromosomal analysis, her two uncles aged 28 and 30 years, respectively, with reduced intelligence and unusual appearance but not apparent Down syndrome, and a severely retarded 6-year-old girl with dysmorphy and epilepsy from the same family. Cytogenetic studies of patients and normal intervening relatives had been carried out at different institutions with normal results. Fluorescence in situ hybridization using whole chromosome painting and unique-copy probes (cosmids) and high-resolution banding revealed a familial subtelomeric translocation of chromosomes 18 and 21, resulting in partial trisomy 21 in the infant and her two uncles, and partial monosomy 21 in the 6-year-old girl. Cytogenetic breakpoints were located in bands 18q23 and 21q22.1, respectively. The molecular breakpoint on chromosome 21 was located between D21S211 (proximal) and D21S1283 (distal) and thus maps within the Down syndrome critical region.