Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merete Fredholm is active.

Publication


Featured researches published by Merete Fredholm.


web science | 1995

THE PIGMAP CONSORTIUM LINKAGE MAP OF THE PIG (SUS SCROFA).

Alan Archibald; Chris Haley; J. F. Brown; S. Couperwhite; H A McQueen; D. Nicholson; W. Coppieters; A. Van de Weghe; A. Stratil; Anne Katrine Winterø; Merete Fredholm; N. J. Larsen; Vivi Hunnicke Nielsen; Denis Milan; N. Woloszyn; Annie Robic; M. Dalens; Juliette Riquet; J. Gellin; J. C. Caritez; G. Burgaud; L. Ollivier; J. P. Bidanel; Marcel Vaiman; Christine Renard; H. Geldermann; R. Davoli; D. Ruyter; E. J. M. Verstege; M.A.M. Groenen

A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Strong signatures of selection in the domestic pig genome

Carl-Johan Rubin; Hendrik-Jan Megens; Alvaro Martinez Barrio; Khurram Maqbool; Shumaila Sayyab; Doreen Schwochow; Chao Wang; Örjan Carlborg; Patric Jern; Claus B. Jørgensen; Alan Archibald; Merete Fredholm; M.A.M. Groenen; Leif Andersson

Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.


Nature Genetics | 2008

Highly effective SNP-based association mapping and management of recessive defects in livestock

Carole Charlier; Wouter Coppieters; Frédéric Rollin; Daniel Desmecht; Jørgen S. Agerholm; Nadine Cambisano; Eloisa Carta; Sabrina Dardano; Marc Dive; Jean-Claude Frennet; R Hanset; Xavier Hubin; Claus B. Jørgensen; Latifa Karim; Matthew Kent; Kirsten Harvey; Brian R. Pearce; Patricia Simon; Nico Tama; Haisheng Nie; Sébastien Vandeputte; Sigbjørn Lien; Maria Longeri; Merete Fredholm; Robert J. Harvey; Michel Georges

The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.


PLOS Genetics | 2011

Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping.

Amaury Vaysse; Abhirami Ratnakumar; Thomas Derrien; Erik Axelsson; Gerli Rosengren Pielberg; Snaevar Sigurdsson; Tove Fall; Eija H. Seppälä; Mark Hansen; Cindy Lawley; Elinor K. Karlsson; Danika L. Bannasch; Carles Vilà; Hannes Lohi; Francis Galibert; Merete Fredholm; Jens Häggström; Åke Hedhammar; Catherine André; Kerstin Lindblad-Toh; Christophe Hitte; Matthew T. Webster

The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Rethinking dog domestication by integrating genetics, archeology, and biogeography

Greger Larson; Elinor K. Karlsson; Angela R. Perri; Matthew T. Webster; Simon Y. W. Ho; Joris Peters; Peter W. Stahl; Philip Piper; Frode Lingaas; Merete Fredholm; Kenine E. Comstock; Jaime F. Modiano; C. Schelling; Alexander I. Agoulnik; P.A.J. Leegwater; Keith Dobney; Jean-Denis Vigne; Carles Vilà; Leif Andersson; Kerstin Lindblad-Toh

The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called “ancient” breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First, none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog’s wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication.


BMC Genomics | 2010

Pig genome sequence - analysis and publication strategy

Alan Archibald; Lars Bolund; Carol Churcher; Merete Fredholm; M.A.M. Groenen; B. Harlizius; Kyung Tai Lee; Denis Milan; Jane Rogers; Max F. Rothschild; Hirohide Uenishi; Jun Wang; Lawrence B. Schook

BackgroundThe pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing.ResultsAssemblies of the BAC clone derived genome sequence have been annotated using the Pre-Ensembl and Ensembl automated pipelines and made accessible through the Pre-Ensembl/Ensembl browsers. The current annotated genome assembly (Sscrofa9) was released with Ensembl 56 in September 2009. A revised assembly (Sscrofa10) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30× genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were preferentially selected for sequencing. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication.ConclusionsIn this marker paper, the Swine Genome Sequencing Consortium (SGSC) sets outs its plans for analysis of the pig genome sequence, for the application and publication of the results.


Genomics | 1992

Variable (dG-dT)n·(dC-dA)n sequences in the porcine genome

Anne Katrine Winterø; Merete Fredholm; Preben D. Thomsen

One of the more widely studied simple repeat sequences in the mammalian genome is the (dG-dT)n.(dC-dA)n dinucleotide repeat sequence. As these repeats are highly polymorphic and fairly evenly distributed in diverse mammalian genomes, they constitute a very powerful tool for genetic mapping in a wide variety of species. So far, the knowledge about repeat sequences in the porcine genome is sparse and only a few areas of this genome have been sequenced. We have isolated and characterized 108 porcine (dG-dT)n.(dC-dA)n sequences and studied the distribution of these, both by investigating random clones and by performing in situ hybridization. A remarkable correlation between humans and pigs was found with respect to the structure, to the number of repeat blocks, and to the chromosomal distribution.


Mammalian Genome | 1993

Characterization of 24 porcine (dA-dC)n-(dT-dG)n microsatellites: genotyping of unrelated animals from four breeds and linkage studies

Merete Fredholm; Anne Katrine Winterø; Knud Christensen; Birte Kristensen; Poul Bräuner Nielsen; W. Davies; Alan Archibald

Twenty-four PCR primer pairs were designed for the detection of porcine microsatellites. Polymorphism was investigated in 76 unrelated animals from four different breeds: Duroc, Landrace, Hampshire, and Yorkshire. Compared with human microsatellites, a general lower heterozygosity was detected; however, for each microsatellite a significant variation between breeds in number of alleles and heterozygosity was seen. Mean heterozygosity was found to be significantly higher (P<0.01%) in the Yorkshire breed than in the other three breeds. Linkage analyses with the CEPH linkage packet were performed in a backcross family comprising 45 animals, of which 43 had informative meioses. Ten of the microsatellites could be assigned to six different linkage groups, demonstrating that linkage mapping with microsatellites can be carried out with great efficiency in a relatively small number of animals. Four of the linkage groups represent Chromosomes (Chrs) 4, 6, 7, and 8 respectively, while two linkage groups are unassigned.


Genome Biology | 2007

Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

Jan Gorodkin; Susanna Cirera; Jakob Hedegaard; Michael J. Gilchrist; Frank Panitz; Claus Jørgensen; Karsten Scheibye-Knudsen; Troels Arvin; Steen Lumholdt; Milena Sawera; Trine Green; Bente Nielsen; Jakob Hull Havgaard; Carina Rosenkilde; Jun-Jun Wang; Heng Li; Ruiqiang Li; Bin Liu; Songnian Hu; Wei Dong; Wei Li; Jun Qing Yu; Jian Wang; Hans-Henrik Stærfeldt; Rasmus Wernersson; Lone Madsen; Bo Thomsen; Henrik Hornshøj; Zhan Bujie; Xuegang Wang

BackgroundKnowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages.ResultsUsing the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories.ConclusionThis EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies.


Mammalian Genome | 1997

Towards construction of a canine linkage map: Establishment of 16 linkage groups

Frode Lingaas; A. Sorensen; R. K. Juneja; S. Johansson; Merete Fredholm; Anne Katrine Winterø; J. Sampson; Cathryn S. Mellersh; A. Curzon; N. G. Holmes; M. M. Binns; H. F. Dickens; Edward Ryder; John A. Gerlach; E. Bäumle; Gaudenz Dolf

1Norwegian Kennel Klub and Department of Morphology, Genetics and Aquatic Biology, Section of Genetics, P.O. Box. 8146 Dep., N-0033 Oslo, Norway ZDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden 3Department of Animal Science and Animal Health, Division of Animal Genetics, The Royal Veterinary and Agricultural University, Btilowsvej, 13, DK-1870, Fredriksberg C, Copenhagen, Denmark ~The Department of Biochemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK 5Centre for Preventive Medicine, Animal Health Trust, PO Box 5, Newmarket, Suffolk CB8 7DW, UK 6Medical Technology and Medicine, Michigan State University, B228 Life Science, East Lansing, Michigan 48824-1317, USA 7Institute of Animal Breeding, University of Berne, Bremgartenstrasse 109 a, 3012 Berne, Switzerland

Collaboration


Dive into the Merete Fredholm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanna Cirera

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Gorodkin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Cirera

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Nejsum

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge