Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merete K. Raarup is active.

Publication


Featured researches published by Merete K. Raarup.


Microbiology | 2009

Actinomyces naeslundii in initial dental biofilm formation

Irene Dige; Merete K. Raarup; Jens R. Nyengaard; Mogens Kilian; Bente Nyvad

The combined use of confocal laser scanning microscopy (CLSM) and fluorescent in situ hybridization (FISH) offers new opportunities for analysis of the spatial relationships and temporal changes of specific members of the microbiota of intact dental biofilms. The purpose of this study was to analyse the patterns of colonization and population dynamics of Actinomyces naeslundii compared to streptococci and other bacteria during the initial 48 h of biofilm formation in the oral cavity. Biofilms developed on standardized glass slabs mounted in intra-oral appliances worn by ten individuals for 6, 12, 24 and 48 h. The biofilms were subsequently labelled with probes against A. naeslundii (ACT476), streptococci (STR405) or all bacteria (EUB338), and were analysed by CLSM. Labelled bacteria were quantified by stereological tools. The results showed a notable increase in the number of streptococci and A. naeslundii over time, with a tendency towards a slower growth rate for A. naeslundii compared with streptococci. A. naeslundii was located mainly in the inner part of the multilayered biofilm, indicating that it is one of the species that attaches directly to the acquired pellicle. The participation of A. naeslundii in the initial stages of dental biofilm formation may have important ecological consequences.


Journal of Biological Chemistry | 2008

Endocytosis of Apolipoprotein A-V by Members of the Low Density Lipoprotein Receptor and the Vps10p Domain Receptor Families

Stefan Nilsson; Stine Christensen; Merete K. Raarup; Robert O. Ryan; Morten Nielsen

Apolipoprotein A-V (apoA-V) is present in low amounts in plasma and has been found to modulate triacylglycerol levels in humans and in animal models. ApoA-V displays affinity for members of the low density lipoprotein receptor (LDL-R) gene family, known as the classical lipoprotein receptors, including LRP1 and SorLA/LR11. In addition to LDL-A binding repeats, the mosaic receptor SorLA/LR11 also possesses a Vps10p domain. Here we show that apoA-V also binds to sortilin, a receptor from the Vsp10p domain gene family that lacks LDL-A repeats. Binding of apoA-V to sortilin was competed by neurotensin, a ligand that binds specifically to the Vps10p domain. To investigate the biological fate of receptor-bound apoA-V, binding experiments were conducted with cultured human embryonic kidney cells transfected with either SorLA/LR11 or sortilin. Compared with nontransfected cells, apoA-V binding to SorLA/LR11- and sortilin-expressing cells was markedly enhanced. Internalization experiments, live imaging studies, and fluorescence resonance energy transfer analyses demonstrated that labeled apoA-V was rapidly internalized, co-localized with receptors in early endosomes, and followed the receptors through endosomes to the trans-Golgi network. The observed decrease of fluorescence signal intensity as a function of time during live imaging experiments suggested ligand uncoupling in endosomes with subsequent delivery to lysosomes for degradation. This interpretation was supported by experiments with 125I-labeled apoA-V, demonstrating clear differences in degradation between transfected and nontransfected cells. We conclude that apoA-V binds to receptors possessing LDL-A repeats and Vsp10p domains and that apoA-V is internalized into cells via these receptors. This could be a mechanism by which apoA-V modulates lipoprotein metabolism in vivo.


Cardiovascular Research | 2012

Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury

Mette Kallestrup Hagensen; Merete K. Raarup; Martin Bødtker Mortensen; Troels Thim; Jens R. Nyengaard; Erling Falk; Jacob F. Bentzon

AIMS Endothelial regeneration after vascular injury, including percutaneous coronary intervention, is essential for vascular homeostasis and inhibition of neointima formation. Circulating endothelial progenitor cells (EPCs) have been implicated to contribute by homing and differentiating into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein (GFP) in ECs. We found that the endothelium regenerated with GFP(+) ECs as a function of time, evolving from the anastomosis sites towards the centre of the transplant. A migration front of ECs at Day 7 was verified by scanning electron microscopy and by bright-field microscopy using recipient TIE2-lacZ mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP recipient mouse. Among 1186 ECs identified in re-endothelialized transplants (n= 5) by staining for von Willebrand Factor or vascular endothelial-cadherin, we did not find any blood-derived (GFP(+)) cells. CONCLUSION Endothelial regeneration after vascular injury did not involve circulating EPCs but was mediated solely by migration of ECs from the adjacent healthy endothelium.


Molecular Therapy | 2010

siRNA Nanoparticle Functionalization of Nanostructured Scaffolds Enables Controlled Multilineage Differentiation of Stem Cells

Morten Østergaard Andersen; Jens Vinge Nygaard; Jorge S. Burns; Merete K. Raarup; Jens R. Nyengaard; Cody Bünger; Flemming Besenbacher; Kenneth A. Howard; Moustapha Kassem; Jørgen Kjems

The creation of complex tissues and organs is the ultimate goal in tissue engineering. Engineered morphogenesis necessitates spatially controlled development of multiple cell types within a scaffold implant. We present a novel method to achieve this by adhering nanoparticles containing different small-interfering RNAs (siRNAs) into nanostructured scaffolds. This allows spatial retention of the RNAs within nanopores until their cellular delivery. The released siRNAs were capable of gene silencing BCL2L2 and TRIB2, in mesenchymal stem cells (MSCs), enhancing osteogenic and adipogenic differentiation, respectively. This approach for enhancing a single type of differentiation is immediately applicable to all areas of tissue engineering. Different nanoparticles localized to spatially distinct locations within a single implant allowed two different tissue types to develop in controllable areas of an implant. As a consequence of this, we predict that complex tissues and organs can be engineered by the in situ development of multiple cell types guided by spatially restricted nanoparticles.


Journal of Cell Science | 2011

SorLA regulates the activity of lipoprotein lipase by intracellular trafficking

Stine C. Klinger; Simon Glerup; Merete K. Raarup; Muriel Mari; Mette Nyegaard; Gerbrand Koster; Thaneas Prabakaran; Stefan Nilsson; Maj M. Kjaergaard; Oddmund Bakke; Anders Nykjaer; Claus Munck Petersen; Morten Nielsen

Many different tissues and cell types exhibit regulated secretion of lipoprotein lipase (LPL). However, the sorting of LPL in the trans Golgi network has not, hitherto, been understood in detail. Here, we characterize the role of SorLA (officially known as SorLA-1 or sortilin-related receptor) in the intracellular trafficking of LPL. We found that LPL bound to SorLA under neutral and acidic conditions, and in cells this binding mainly occurred in vesicular structures. SorLA expression changed the subcellular distribution of LPL so it became more concentrated in endosomes. From the endosomes, LPL was further routed to the lysosomes, which resulted in a degradation of newly synthesized LPL. Consequently, an 80% reduction of LPL activity was observed in cells that expressed SorLA. By analogy, SorLA regulated the vesicle-like localization of LPL in primary neuronal cells. Thus, LPL binds to SorLA in the biosynthetic pathway and is subsequently transported to endosomes. As a result of this SorLA mediated-transport, newly synthesized LPL can be routed into specialized vesicles and eventually sent to degradation, and its activity thereby regulated.


PLOS ONE | 2011

pH Landscapes in a Novel Five-Species Model of Early Dental Biofilm

Sebastian Schlafer; Merete K. Raarup; Rikke Louise Meyer; Duncan S. Sutherland; Irene Dige; Jens R. Nyengaard; Bente Nyvad

Background Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. Methodology/Principal Findings Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. Conclusions/Significance The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.


PLOS ONE | 2012

Osteopontin Reduces Biofilm Formation in a Multi-Species Model of Dental Biofilm

Sebastian Schlafer; Merete K. Raarup; Peter Langborg Wejse; Bente Nyvad; Brigitte Städler; Duncan S. Sutherland; Henrik Birkedal; Rikke Louise Meyer

Background Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms. Methodology/Principal Findings Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically. Conclusions/Significance OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.


European Biophysics Journal | 2010

Interaction of hnRNP A1 with telomere DNA G-quadruplex structures studied at the single molecule level

Asger Christian Krüger; Merete K. Raarup; Morten Muhlig Nielsen; M. Kristensen; Flemming Besenbacher; Jørgen Kjems; Victoria Birkedal

G-rich telomeric DNA sequences can form G-quadruplex structures. The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and a shortened derivative (UP1) are active in telomere length regulation, and it has been reported that UP1 can unwind G-quadruplex structures. Here, we investigate the interaction of hnRNP A1 with G-quadruplex DNA structures containing the human telomere repeat (TTAGGG) by gel retardation assays, ensemble fluorescence energy transfer (FRET) spectroscopy, and single molecule FRET microscopy. Our biochemical experiments show that hnRNP A1 binds well to the G-quadruplex telomeric DNA. Ensemble and single molecule FRET measurements provide further insight into molecular conformation: the telomeric DNA overhang is found to be in a folded state in the absence of hnRNP A1 and to remain predominantly in a compact state when complexed with hnRNP A1. This finding is in contrast to the previously reported crystal structures of UP1-telomere DNA complexes where the DNA oligo within the protein-DNA complex is in a fully open conformation.


Applied and Environmental Microbiology | 2015

Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4.

Sebastian Schlafer; Javier Garcia; Matilde Greve; Merete K. Raarup; Bente Nyvad; Irene Dige

ABSTRACT pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of <6, C-SNARF-4 stained 15 bacterial species frequently isolated from dental biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.


Journal of Biomedical Optics | 2009

Enhanced yellow fluorescent protein photoconversion to a cyan fluorescent protein-like species is sensitive to thermal and diffusion conditions

Merete K. Raarup; Anja W. Fjorback; Stig Mølgaard Rask Jensen; Heidi Kaastrup Müller; Maj M. Kjaergaard; Hanne Poulsen; Ove Wiborg; Jens R. Nyengaard

Ongoing research efforts into fluorescent proteins continuously generates new mutation variants, some of which can become photoactivated or photoconverted to a red-shifted color upon intense UV or blue light illumination. We report a built-in propensity for enhanced yellow fluorescent protein (EYFP) to undergo irreversible photoconversion into a cyan fluorescent protein (CFP)-like species upon green-light illumination. The photoconversion is thermally activated, happens mainly in fixed, nonsealed cell samples, and may result in a very bright and relatively photostable CFP-like species. The photoconversion efficiency depends on the sample diffusivity and is much increased in dehydrated, oxygenated samples. Given the large variations in conversion efficiency observed among samples as well as within a sample, photoconversion cannot be appropriately accounted for in the analysis of acceptor photobleaching fluorescence resonance energy transfer (pbFRET) images and should rather be completely avoided. Thus, samples should always be checked and discarded if photoconversion is observed.

Collaboration


Dive into the Merete K. Raarup's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge