Merissa Olmer
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Merissa Olmer.
Arthritis & Rheumatism | 2015
B. Caramés; Merissa Olmer; William B. Kiosses; Martin Lotz
Aging is a main risk factor for osteo arthritis (OA), the most prevalent musculoskeletal disorder. Defects in autophagy, an essential cellular homeostasis mechanism, have recently been observed in OA articular cartilage. The objectives of this study were to establish the constitutive level of autophagy activation in normal cartilage and to monitor the temporal relationship between changes in autophagy and aging‐related degradation of cartilage in a mouse model.
European Journal of Immunology | 2016
Jorg van Loosdregt; Maura Rossetti; Roberto Spreafico; Maryam Moshref; Merissa Olmer; Gary W. Williams; Pavanish Kumar; Dana Copeland; Ken D. Pischel; Martin Lotz; Salvatore Albani
Rheumatoid arthritis (RA) is an autoimmune disease hallmarked by aberrant cellular homeostasis, resulting in hyperactive CD4+ T cells that are more resistant to apoptosis. Both hyperactivation and resistance to apoptosis may contribute to the pathogenicity of CD4+ T cells in the autoimmune process. A better knowledge of the mechanisms determining such impaired homeostasis could contribute significantly to both the understanding and the treatment of the disease. Here we investigated whether autophagy, is dysregulated in CD4+ T cells of RA patients, resulting in disturbed T‐cell homeostasis. We demonstrate that the rate of autophagy is significantly increased in CD4+ T cells from RA patients, and that increased autophagy is also a feature of in vitro activated CD4+ T cells. The increased apoptosis resistance observed in CD4+ T cells from RA patients was significantly reversed upon autophagy inhibition. These mechanisms may contribute to RA pathogenesis, as autophagy inhibition reduced both arthritis incidence and disease severity in a mouse collagen induced arthritis mouse model. Conversely, in Atg5flox/flox‐CD4‐Cre+ mice, in which all T cells are autophagy deficient, T cells showed impaired activation and proliferation. These data provide novel insight into the pathogenesis of RA and underscore the relevance of autophagy as a promising therapeutic target.
American Journal of Hematology | 2015
Vikas Bhat; Merissa Olmer; Shweta Joshi; Donald L. Durden; Thomas J. Cramer; R. F. W. Barnes; Scott T. Ball; Tudor H. Hughes; Mauricio Silva; James V. Luck; Randy E. Moore; Laurent O. Mosnier; Annette von Drygalski
Hemophilic arthropathy is a debilitating condition that can develop as a consequence of frequent joint bleeding despite adequate clotting factor replacement. The mechanisms leading to repeated spontaneous bleeding are unknown. We investigated synovial, vascular, stromal, and cartilage changes in response to a single induced hemarthrosis in the FVIII‐deficient mouse. We found soft‐tissue hyperproliferation with marked induction of neoangiogenesis and evolving abnormal vascular architecture. While soft‐tissue changes were rapidly reversible, abnormal vascularity persisted for months and, surprisingly, was also seen in uninjured joints. Vascular changes in FVIII‐deficient mice involved pronounced remodeling with expression of α‐Smooth Muscle Actin (SMA), Endoglin (CD105), and vascular endothelial growth factor, as well as alterations of joint perfusion as determined by in vivo imaging. Vascular architecture changes and pronounced expression of α‐SMA appeared unique to hemophilia, as these were not found in joint tissue obtained from mouse models of rheumatoid arthritis and osteoarthritis and from patients with the same conditions. Evidence that vascular changes in hemophilia were significantly associated with bleeding and joint deterioration was obtained prospectively by dynamic in vivo imaging with musculoskeletal ultrasound and power Doppler of 156 joints (elbows, knees, and ankles) in a cohort of 26 patients with hemophilia at baseline and during painful episodes. These observations support the hypothesis that vascular remodeling contributes significantly to bleed propagation and development of hemophilic arthropathy. Based on these findings, the development of molecular targets for angiogenesis inhibition may be considered in this disease. Am. J. Hematol. 90:1027–1035, 2015.
Osteoarthritis and Cartilage | 2016
O. Alvarez-Garcia; Merissa Olmer; R. Akagi; Yukio Akasaki; Kathleen M. Fisch; T. Shen; Andrew I. Su; Martin Lotz
OBJECTIVE Aging is a main risk factor for the development of osteoarthritis (OA) and the molecular mechanisms underlying the aging-related changes in articular cartilage include increased mammalian target of rapamycin (mTOR) signaling and defective autophagy. REDD1 is an endogenous inhibitor of mTOR that regulates cellular stress responses. In this study we measured REDD1 expression in normal, aged and OA cartilage and assessed REDD1 function in human and mouse articular chondrocytes. METHODS REDD1 expression was analyzed in human and mouse articular cartilage by qPCR, western blotting, and immunohistochemistry. For functional studies, REDD1 and TXNIP knockdown or overexpression was performed in chondrocytes in the presence or absence of rapamycin and chloroquine, and mTOR signaling and autophagy were measured by western blotting. REDD1/TXNIP protein interaction was assessed by co-immunoprecipitation experiments. RESULTS Human and mouse cartilage from normal knee joints expressed high levels of REDD1. REDD1 expression was significantly reduced in aged and OA cartilage. In cultured chondrocytes, REDD1 knockdown increased whereas REDD1 overexpression decreased mTOR signaling. In addition, REDD1 activated autophagy by an mTOR independent mechanism that involved protein/protein interaction with TXNIP. The REDD1/TXNIP complex was required for autophagy activation in chondrocytes. CONCLUSION The present study shows that REDD1 is highly expressed in normal human articular cartilage and reduced during aging and OA. REDD1 in human chondrocytes negatively regulates mTOR activity and is essential for autophagy activation. Reduced REDD1 expression thus represents a novel mechanism for the increased mTOR activation and defective autophagy observed in OA.
Arthritis & Rheumatism | 2015
Yukio Akasaki; Natàlia Reixach; Tokio Matsuzaki; O. Alvarez-Garcia; Merissa Olmer; Yukihide Iwamoto; Joel N. Buxbaum; Martin Lotz
Amyloid deposits are prevalent in osteoarthritic (OA) joints. We undertook this study to define the dominant precursor and to determine whether the deposits affect chondrocyte functions.
Osteoarthritis and Cartilage | 2016
J. Kwok; H. Onuma; Merissa Olmer; Martin Lotz; Shawn P. Grogan; Darryl D. D'Lima
OBJECTIVE To establish a standardized protocol for histopathological assessment of murine menisci that can be applied to evaluate transgenic, knock-out/in, and surgically induced OA models. METHODS Knee joints from C57BL/6J mice (6-36 months) as well as from mice with surgically-induced OA were processed and cut into sagittal sections. All sections included the anterior and posterior horns of the menisci and were graded for (1) surface integrity, (2) cellularity, (3) Safranin-O staining distribution and intensity. Articular cartilage in the knee joints was also scored. RESULTS The new histopathological grading system showed good inter- and intra-class correlation coefficients. The major age-related changes in murine menisci in the absence of OA included decreased Safranin O staining intensity, abnormal cell distribution and the appearance of acellular areas. Menisci from mice with surgically-induced OA showed severe fibrillations, partial/total loss of tissue, and calcifications. Abnormal cell arrangements included both regional hypercellularity and hypocellularity along with hypertrophy and cell clusters. In general, the posterior horns were less affected by age and OA. CONCLUSION A new standardized protocol and histopathological grading system has been developed and validated to allow for a comprehensive, systematic evaluation of changes in aging and OA-affected murine menisci. This system was developed to serve as a standardized technique and tool for further studies in murine meniscal pathophysiology models.
Science Translational Medicine | 2018
Tokio Matsuzaki; O. Alvarez-Garcia; Sho Mokuda; Keita Nagira; Merissa Olmer; Ramya Gamini; Kohei Miyata; Yukio Akasaki; Andrew I. Su; Hiroshi Asahara; Martin Lotz
FoxO play a key role in postnatal cartilage development, maturation, homeostasis, and osteoarthritis pathogenesis. Clever as a FoxO FoxO proteins are transcription factors that regulate autophagy, metabolism, and aging. Matsuzaki et al. investigated the role of different FoxO in cartilage development, homeostasis, and degeneration during osteoarthritis. Cartilage was thicker and chondrocytes were more proliferative in young mice lacking FoxO1/3/4 in cartilage. Chondrocyte-specific FoxO-deficient mice exhibited worse arthritis with aging and increased cartilage degradation in response to surgically induced arthritis; they also expressed less lubricin, a protein that helps reduce friction in joints. FoxO1 and autophagy-related genes were reduced in human chondrocytes from patients with osteoarthritis, and restoring FoxO1 expression reduced inflammatory cytokines and up-regulated lubricin. This study suggests that FoxO factors could be targets for therapy in osteoarthritis. Aging is a main risk factor for osteoarthritis (OA). FoxO transcription factors protect against cellular and organismal aging, and FoxO expression in cartilage is reduced with aging and in OA. To investigate the role of FoxO in cartilage, Col2Cre-FoxO1, 3, and 4 single knockout (KO) and triple KO mice (Col2Cre-TKO) were analyzed. Articular cartilage in Col2Cre-TKO and Col2Cre-FoxO1 KO mice was thicker than in control mice at 1 or 2 months of age. This was associated with increased proliferation of chondrocytes of Col2Cre-TKO mice in vivo and in vitro. OA-like changes developed in cartilage, synovium, and subchondral bone between 4 and 6 months of age in Col2Cre-TKO and Col2Cre-FoxO1 KO mice. Col2Cre-FoxO3 and FoxO4 KO mice showed no cartilage abnormalities until 18 months of age when Col2Cre-FoxO3 KO mice had more severe OA than control mice. Autophagy and antioxidant defense genes were reduced in Col2Cre-TKO mice. Deletion of FoxO1/3/4 in mature mice using Aggrecan(Acan)-CreERT2 (AcanCreERT-TKO) also led to spontaneous cartilage degradation and increased OA severity in a surgical model or treadmill running. The superficial zone of knee articular cartilage of Col2Cre-TKO and AcanCreERT-TKO mice exhibited reduced cell density and markedly decreased Prg4. In vitro, ectopic FoxO1 expression increased Prg4 and synergized with transforming growth factor–β stimulation. In OA chondrocytes, overexpression of FoxO1 reduced inflammatory mediators and cartilage-degrading enzymes, increased protective genes, and antagonized interleukin-1β effects. Our observations suggest that FoxO play a key role in postnatal cartilage development, maturation, and homeostasis and protect against OA-associated cartilage damage.
Arthritis & Rheumatism | 2017
O. Alvarez-Garcia; Tokio Matsuzaki; Merissa Olmer; Lars Plate; Jeffery W. Kelly; Martin Lotz
Regulated in development and DNA damage response 1 (REDD1) is an endogenous inhibitor of mechanistic target of rapamycin (mTOR) that regulates cellular stress responses. REDD1 expression is decreased in aged and osteoarthritic (OA) cartilage, and it regulates mTOR signaling and autophagy in articular chondrocytes in vitro. This study was undertaken to investigate the effects of REDD1 deletion in vivo using a mouse model of experimental OA.
Arthritis & Rheumatism | 2017
O. Alvarez-Garcia; Tokio Matsuzaki; Merissa Olmer; Lars Plate; Jeffery W. Kelly; Martin Lotz
Regulated in development and DNA damage response 1 (REDD1) is an endogenous inhibitor of mechanistic target of rapamycin (mTOR) that regulates cellular stress responses. REDD1 expression is decreased in aged and osteoarthritic (OA) cartilage, and it regulates mTOR signaling and autophagy in articular chondrocytes in vitro. This study was undertaken to investigate the effects of REDD1 deletion in vivo using a mouse model of experimental OA.
Osteoarthritis and Cartilage | 2016
T. Shen; O. Alvarez-Garcia; Y. Li; Merissa Olmer; Martin Lotz
OBJECTIVES Aging is an important osteoarthritis (OA) risk factor and compromised stress defense responses may mediate this risk. The Sestrins (Sesn) promote cell survival under stress conditions and regulate AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling. This study examined Sesn expression in normal and OA cartilage and functions of Sesn in chondrocytes. METHODS Sesn expression in human and mouse normal and OA cartilage was analyzed by quantitative polymerase chain reaction (PCR) and immunohistochemistry. Sesn function was investigated by using small interfering RNA (siRNA) mediated Sesn knockdown and overexpression with analysis of cell survival, gene expression, autophagy, and AMPK and mTOR activation. RESULTS Sesn mRNA levels were significantly reduced in human OA cartilage and immunohistochemistry of human and mouse OA cartilage also showed a corresponding reduction in protein levels. In cultured human chondrocytes Sesn1, 2 and 3 were expressed and increased by tunicamycin, an endoplasmic reticulum (ER) stress response inducer and 2-deoxyglucose (2DG), a metabolic stress inducer. Sesn1 and 2 were increased by tBHP, an oxidative stress inducer. Sesn knockdown by siRNA reduced chondrocyte viability under basal culture conditions and in the presence of 2DG. Sesn overexpression enhanced LC3-II formation and autophagic flux, and this was related to changes in mTOR but not AMPK activation. CONCLUSION These findings are the first to show that Sesn expression is suppressed in OA affected cartilage. Sesn support chondrocyte survival under stress conditions and promote autophagy activation through modulating mTOR activity. Suppression of Sesn in OA cartilage contributes to deficiency in an important cellular homeostasis mechanism.