Meritxell Teixidó
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Meritxell Teixidó.
Biomaterials | 2012
Roger Prades; Simón Guerrero; Eyleen Araya; Claudia Molina; Edison Salas; Esther Zurita; Javier Selva; Gustavo Egea; Meritxell Teixidó; Marcelo J. Kogan; Ernest Giralt
The treatment of Alzheimers disease and many other brain-related disorders is limited because of the presence of the blood-brain barrier, which highly regulate the crossing of drugs. Metal nanoparticles have unique features that could contribute to the development of new therapies for these diseases. Nanoparticles have the capacity to carry several molecules of a drug; furthermore, their unique physico-chemical properties allow, for example, photothermal therapy to produce molecular surgery to destroy tumor cells and toxic structures. Recently, we demonstrated that gold nanoparticles conjugated to the peptide CLPFFD are useful to destroy the toxic aggregates of β-amyloid, similar to the ones found in the brains of patients with Alzheimers disease. However, nanoparticles, like many other compounds, have null or very low capacity to cross the blood-brain barrier. In order to devise a strategy to improve drug delivery to the brain, here we introduced the peptide sequence THRPPMWSPVWP into the gold nanoparticle-CLPFFD conjugate. This peptide sequence interacts with the transferrin receptor present in the microvascular endothelial cells of the blood-brain barrier, thus causing an increase in the permeability of the conjugate in brain, as shown by experiments in vitro and in vivo. Our results are highly relevant for the therapeutic applications of gold nanoparticles for molecular surgery in the treatment of neurodegenerative diseases such as Alzheimers disease.
Angewandte Chemie | 2015
Roger Prades; Benjamí Oller-Salvia; Susanne M. Schwarzmaier; Javier Selva; María Moros; Matilde Balbi; Valeria Grazú; Jesús M. de la Fuente; Gustavo Egea; Nikolaus Plesnila; Meritxell Teixidó; Ernest Giralt
The blood-brain barrier (BBB) is a formidable physical and enzymatic barrier that tightly controls the passage of molecules from the blood to the brain. In fact, less than 2 % of all potential neurotherapeutics are able to cross it. Here, by applying the retro-enantio approach to a peptide that targets the transferrin receptor, a full protease-resistant peptide with the capacity to act as a BBB shuttle was obtained and thus enabled the transport of a variety of cargos into the central nervous system.
Angewandte Chemie | 2016
Benjamí Oller-Salvia; Macarena Sánchez-Navarro; Sonia Ciudad; Marc Guiu; Pol Arranz-Gibert; Cristina Garcia; Roger R. Gomis; Roméo Cecchelli; Jesús García; Ernest Giralt; Meritxell Teixidó
Abstract Drug delivery across the blood–brain barrier (BBB) is a formidable challenge for therapies targeting the central nervous system. Although BBB shuttle peptides enhance transport into the brain non‐invasively, their application is partly limited by lability to proteases. The present study proposes the use of cyclic peptides derived from venoms as an affordable way to circumvent this drawback. Apamin, a neurotoxin from bee venom, was minimized by reducing its complexity, toxicity, and immunogenicity, while preserving brain targeting, active transport, and protease resistance. Among the analogues designed, the monocyclic lactam‐bridged peptidomimetic MiniAp‐4 was the most permeable. This molecule is capable of translocating proteins and nanoparticles in a human‐cell‐based BBB model. Furthermore, MiniAp‐4 can efficiently deliver a cargo across the BBB into the brain parenchyma of mice.
Bioorganic & Medicinal Chemistry | 2008
Teresa Tarragó; Nessim Kichik; Birgit Claasen; Roger Prades; Meritxell Teixidó; Ernest Giralt
Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. It has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders and therefore may have important clinical implications. In a previous work, we used (19)F NMR to search for new prolyl oligopeptidase inhibitors from a library of traditional Chinese medicine plant extracts, and identified several extracts as powerful inhibitors of this peptidase. Here, the flavonoid baicalin was isolated as the active component of an extract of Scutellaria baicalensis roots having prolyl oligopeptidase inhibitory activity. Baicalin inhibited prolyl oligopeptidase in a dose-dependent manner. Inhibition experiments using baicalin analogs showed that the sugar moiety was not necessary for activity. The IC(50)s of baicalin and its aglycone derivative baicalein were rather similar, showing that the sugar moiety was not involved in the interaction of baicalin with POP. These results were confirmed by saturation transfer difference NMR experiments. To further understand the absorption and transport mechanisms of baicalin and baicalein, we evaluated their transport in vitro through the gastrointestinal tract and the blood-brain barrier using a Parallel Artificial Membrane Permeability Assay. The molecule which potentially crosses both barriers was identified as baicalein, the aglycone moiety of baicalin. Our results show that baicalin is a new prodrug able to inhibit prolyl oligopeptidase. As baicalin is a natural compound with a long history of safe administration to humans, it is a highly attractive base from which to develop new treatments for schizophrenia, bipolar affective disorder, and related neuropsychiatric diseases.
Angewandte Chemie | 2011
Morteza Malakoutikhah; Meritxell Teixidó; Ernest Giralt
Advances in the field of shuttle-mediated drug delivery have been made in the last decade; however, the treatment of brain disorders still remains a great challenge because of the presence of the blood-brain barrier (BBB), a structure that limits the access of drugs to their site of action in the central nervous system. Several strategies have been proposed to enhance the transport of drugs across the BBB. In this Review, we focus on the vector-mediated approach, in which a drug is coupled to a molecule (shuttle) that has the ability to cross the BBB and deliver the drug to the brain.
Organic and Biomolecular Chemistry | 2012
Irene Martin; Christian Dohmen; Carlos Mas-Moruno; Christina Troiber; Petra Kos; David Schaffert; Ulrich Lächelt; Meritxell Teixidó; Michael Günther; Horst Kessler; Ernest Giralt; Ernst Wagner
In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and α(v)β(3) integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer.
ChemBioChem | 2011
Irene Martin; Meritxell Teixidó; Ernest Giralt
Cell‐penetrating peptides (CPPs) are powerful tools to transport cell‐impermeable cargoes into the cytoplasm without damaging the cell membrane. The vast majority of these peptides described to date share several features, among others, they are positively charged at physiological pH. In several cases a clear correlation between an increasing number of positive charges and internalization properties has been reported. Here, we describe what, to the best of our knowledge, is the first anionic CPP. This new compound SAP(E) internalizes into a range of cell lines with good efficiency and it shows low toxicity. We also report on the internalization mechanism. The discovery of this new class of CPP opens the way to the intracellular delivery of new molecular cargoes.
Journal of Medicinal Chemistry | 2010
Morteza Malakoutikhah; Roger Prades; Meritxell Teixidó; Ernest Giralt
Here we studied the capacity of N-MePhe-(N-MePhe)(3)-CONH(2), Cha-(N-MePhe)(3)-CONH(2), and 2Nal-(N-MePhe)(3)-CONH(2) to carry various drugs (cargos) in in vitro blood-brain barrier (BBB) models in order to determine the versatility of these peptides as BBB-shuttles for drug delivery to the brain. Using SPPS, the peptides were coupled to GABA, Nip, and ALA to examine their passive BBB permeation by means of PAMPA and their lipophilicity by IAMC. Unaided, these nonpermeating drugs alone did not cross the PAMPA barrier and the BBB passively; however, the peptides tested as potential BBB shuttles transferred them by passive transfer through the PAMPA phospholipid. The permeability of peptides that showed the highest permeability in PAMPA, and Ac-N-MePhe-(N-MePhe)(3)-CONH(2) as the parent peptide was also examined in bovine brain microvessel endothelial cells (BBMECs). These peptide-based BBB shuttles open up the possibility to overcome the formidable obstacle of the BBB, thereby achieving drug delivery to the brain.
Journal of Medicinal Chemistry | 2008
Morteza Malakoutikhah; Meritxell Teixidó; Ernest Giralt
Several peptide families containing N-methylated amino acids were designed and synthesized using solid-phase peptide synthesis (SPPS). The permeability and phospholipophilicity of these compounds were studied by parallel artificial membrane permeability assay (PAMPA) and immobilized artificial membrane chromatography (IAMC) to select the best peptides in terms of length, terminal groups, and amino acid replacement to be used as carriers that pass through a model of the blood-brain barrier (BBB) by passive diffusion. Furthermore, the enzymatic stability of these peptides in human serum and their cell viability by MTT assay were tested. These peptide families showed great stability and nontoxicity. The three peptides that showed the greatest permeability were coupled to levodopa (a nonpassive permeating drug) and assessed. These peptides effectively transferred levodopa through an artificial membrane by means of passive diffusion.
Pharmaceuticals | 2010
Irene Martin; Meritxell Teixidó; Ernest Giralt
There is a pressing need for more effective and selective therapies for cancer and other diseases. Consequently, much effort is being devoted to the development of alternative experimental approaches based on selective systems, which are designed to be specifically directed against target cells. In addition, a large number of highly potent therapeutic molecules are being discovered. However, they do not reach clinical trials because of their low delivery, poor specificity or their incapacity to bypass the plasma membrane. Cell-penetrating peptides (CPPs) are an open door for cell-impermeable compounds to reach intracellular targets. Putting all these together, research is sailing in the direction of the design of systems with the capacity to transport new drugs into a target cell. Some CPPs show cell type specificity while others require modifications or form part of more sophisticated drug delivery systems. In this review article we summarize several strategies for directed drug delivery involving CPPs that have been reported in the literature.