Merja A. Perhonen
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Merja A. Perhonen.
Circulation | 2001
Merja A. Perhonen; Julie H. Zuckerman; Benjamin D. Levine
BackgroundOrthostatic intolerance after bed rest is characterized by hypovolemia and an excessive reduction in stroke volume (SV) in the upright position. We studied whether the reduction in SV is due to a specific adaptation of the heart to head-down tilt bed rest (HDTBR) or acute hypovolemia alone. Methods and ResultsWe constructed left ventricular (LV) pressure-volume curves from pulmonary capillary wedge pressure and LV end-diastolic volume and Starling curves from pulmonary capillary wedge pressure and SV during lower body negative pressure and saline loading in 7 men (25±2 years) before and after 2 weeks of −6° HDTBR and after the acute administration of intravenous furosemide. Both HDTBR and hypovolemia led to a similar reduction in plasma volume. However, baseline LV end-diastolic volume decreased by 20±4% after HDTBR and by 7±2% after hypovolemia (interaction P <0.001). Moreover, SV was reduced more and the Starling curve was steeper during orthostatic stress after HDTBR than after hypovolemia. The pressure-volume curve showed a leftward shift and the equilibrium volume of the left ventricle was decreased after HDTBR; however, after hypovolemia alone, the curve was identical, with no change in equilibrium volume. Lower body negative pressure tolerance was reduced after both conditions; it decreased by 27±7% (P <0.05) after HDTBR and by 18±8% (P <0.05) after hypovolemia. ConclusionsChronic HDTBR leads to ventricular remodeling, which is not seen with equivalent degrees of acute hypovolemia. This remodeling leads to a greater decrease in SV during orthostatic stress after bed rest than hypovolemia alone, potentially contributing to orthostatic intolerance.
Circulation | 2014
Armin Arbab-Zadeh; Merja A. Perhonen; Erin J. Howden; Rong Zhang; Beverley Adams-Huet; Mark J. Haykowsky; Benjamin D. Levine
Background— It is unclear whether, and to what extent, the striking cardiac morphological manifestations of endurance athletes are a result of exercise training or a genetically determined characteristic of talented athletes. We hypothesized that prolonged and intensive endurance training in previously sedentary healthy young individuals could induce cardiac remodeling similar to that observed cross-sectionally in elite endurance athletes. Methods and Results— Twelve previously sedentary subjects (aged 29±6 years; 7 men and 5 women) trained progressively and intensively for 12 months such that they could compete in a marathon. Magnetic resonance images for assessment of right and left ventricular mass and volumes were obtained at baseline and after 3, 6, 9, and 12 months of training. Maximum oxygen uptake ( max) and cardiac output at rest and during exercise (C2H2 rebreathing) were measured at the same time periods. Pulmonary artery catheterization was performed before and after 1 year of training, and pressure-volume and Starling curves were constructed during decreases (lower body negative pressure) and increases (saline infusion) in cardiac volume. Mean max rose from 40.3±1.6 to 48.7±2.5 mL/kg per minute after 1 year (P<0.00001), associated with an increase in both maximal cardiac output and stroke volume. Left and right ventricular mass increased progressively with training duration and intensity and reached levels similar to those observed in elite endurance athletes. In contrast, left ventricular volume did not change significantly until 6 months of training, although right ventricular volume increased progressively from the outset; Starling and pressure-volume curves approached but did not match those of elite athletes. Conclusions— One year of prolonged and intensive endurance training leads to cardiac morphological adaptations in previously sedentary young subjects similar to those observed in elite endurance athletes; however, it is not sufficient to achieve similar levels of cardiac compliance and performance. Contrary to conventional thinking, the left ventricle responds to exercise with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement of endurance training depending on the duration and intensity of exercise. Thereafter, the left ventricle dilates and restores the baseline mass-to-volume ratio. In contrast, the right ventricle responds to endurance training with eccentric remodeling at all levels of training.
Journal of Applied Physiology | 2008
Todd Dorfman; Boaz D. Rosen; Merja A. Perhonen; Tommy Tillery; Roddy McColl; Benjamin D. Levine
Bed rest deconditioning leads to physiological cardiac atrophy, which may compromise left ventricular (LV) filling during orthostatic stress by reducing diastolic untwisting and suction. To test this hypothesis, myocardial-tagged magnetic resonance imaging (MRI) was performed, and maximal untwisting rates of the endocardium, midwall, and epicardium were calculated by Harmonic Phase Analysis (HARP) before and after -6 degrees head-down tilt bed rest for 18 days with (n = 14) and without exercise training (n = 10). LV mass and LV end-diastolic volume were measured using cine MRI. Exercise subjects cycled on a supine ergometer for 30 min, three times per day at 75% maximal heart rate (HR). After sedentary bed rest, there was a significant reduction in maximal untwisting rates of the midwall (-46.8 +/- 14.3 to -35.4 +/- 12.4 degrees /s; P = 0.04) where untwisting is most reliably measured, and to a lesser degree of certainty in the endocardium (-50.3 +/- 13.8 to -40.1 +/- 18.5 degrees /s; P = 0.09); the epicardium was unchanged. In contrast, when exercise was performed in bed, untwisting rates were enhanced at the endocardium (-48.4 +/- 20.8 to -72.3 +/- 22.3 degrees /ms; P = 0.05) and midwall (-39.2 +/- 12.2 to -59.0 +/- 19.6 degrees /s; P = 0.03). The differential response was significant between groups at the endocardium (interaction P = 0.02) and the midwall (interaction P = 0.004). LV mass decreased in the sedentary group (156.4 +/- 30.3 to 149.5 +/- 27.9 g; P = 0.07), but it increased slightly in the exercise-trained subjects (156.4 +/- 34.3 to 162.3 +/- 40.5 g; P = 0.16); (interaction P = 0.03). We conclude that diastolic untwisting is impaired following sedentary bed rest. However, exercise training in bed can prevent the physiological cardiac remodeling associated with bed rest and preserve or even enhance diastolic suction.
Journal of Applied Physiology | 2010
Shigeki Shibata; Merja A. Perhonen; Benjamin D. Levine
There are two possible mechanisms contributing to the excessive fall of stroke volume (and its contribution to orthostatic intolerance) in the upright position after bed rest or spaceflight: reduced cardiac filling due to hypovolemia and/or a less distensible heart due to cardiac atrophy. We hypothesized that preservation of cardiac mechanical function by exercise training, plus normalization of cardiac filling with volume infusion, would prevent orthostatic intolerance after bed rest. Eighteen men and three women were assigned to 1) exercise countermeasure (n=14) and 2) no exercise countermeasure (n=7) groups during bed rest. Bed rest occurred in the 6 degrees head-down tilt position for 18 days. The exercise regimen was prescribed to compensate for the estimated cardiac work reduction between bed rest and ambulatory periods. At the end of bed rest, the subjects were further divided into two additional groups for post-bed rest testing: 1) volume loading with intravenous dextran to normalize cardiac filling pressure and 2) no volume loading. Dextran infusion was given to half of the exercise group and all of the sedentary group after bed rest, leading ultimately to three groups: 1) exercise plus volume infusion; 2) exercise alone; and 3) volume infusion alone. Exercise training alone preserved left ventricular mass and distensibility as well as upright exercise capacity, but lower body negative pressure (LBNP) tolerance was still depressed. LBNP tolerance was maintained only when exercise training was accompanied by dextran infusion. Dextran infusion alone following bed rest without exercise maintained neither orthostatic tolerance nor upright exercise capacity. We conclude that daily supine cycle exercise sufficient to prevent cardiac atrophy can prevent orthostatic intolerance after bed rest only when combined with plasma volume restoration. This maintenance of orthostatic tolerance was achieved by neither exercise nor dextran infusion alone. Cardiac atrophy and hypovolemia are likely to contribute independently to orthostatic intolerance after bed rest.
Journal of Applied Physiology | 2015
Erin J. Howden; Merja A. Perhonen; Rong Zhang; Armin Arbab-Zadeh; Beverley Adams-Huet; Benjamin D. Levine
Cross-sectional studies in athletes suggest that endurance training augments cardiovascular structure and function with apparently different phenotypes in athletic males and females. It is unclear whether the longitudinal response to endurance training leads to similar cardiovascular adaptations between sexes. We sought to determine whether males and females demonstrate similar cardiovascular adaptations to 1 yr of endurance training, matched for training volume and intensity. Twelve previously sedentary males (26 ± 7, n = 7) and females (31 ± 6, n = 5) completed 1 yr of progressive endurance training. All participants underwent a battery of tests every 3 mo to determine maximal oxygen uptake (V̇o2max) and left ventricle (LV) function and morphology (cardiac magnetic resonance imaging). Pulmonary artery catheterization was performed before and after 1 yr of training, and pressure-volume and Starling curves were constructed during decreases (lower-body negative pressure) and increases (saline infusion) in cardiac volume. Males progressively increased V̇o2max, LV mass, and mean wall thickness, before reaching a plateau from month 9 to 12 of training. In contrast, despite exactly the same training, the response in females was markedly blunted, with V̇o2max, LV mass, and mean wall thickness plateauing after only 3 mo of training. The response of LV end-diastolic volume was not influenced by sex (males +20% and females +18%). After training Starling curves were shifted upward and left, but the effect was greatest in males (interaction P = 0.06). We demonstrate for the first time clear sex differences in response to 1 yr of matched endurance training, such that the development of ventricular hypertrophy and increase in V̇o2max in females is markedly blunted compared with males.
Journal of Applied Physiology | 2001
Merja A. Perhonen; Fátima Franco; Lynda D. Lane; Jay C. Buckey; C. Gunnar Blomqvist; Joseph E. Zerwekh; Paul T. Weatherall; Benjamin D. Levine
American Journal of Physiology-heart and Circulatory Physiology | 2004
Qi Fu; Armin Arbab-Zadeh; Merja A. Perhonen; Rong Zhang; Julie H. Zuckerman; Benjamin D. Levine
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2004
Ken-ichi Iwasaki; Rong Zhang; Merja A. Perhonen; Julie H. Zuckerman; Benjamin D. Levine
American Journal of Hypertension | 2013
Christopher J. Morris; Jeffrey A. Hastings; Kara Boyd; Felix Krainski; Merja A. Perhonen; Frank A. J. L. Scheer; Benjamin D. Levine
Medicine and Science in Sports and Exercise | 2001
Dean Palmer; Merja A. Perhonen; Julie H. Zuckerman; Sarah Witkowski; Rong Zhang; Benjamin D. Levine