Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merja Heinäniemi is active.

Publication


Featured researches published by Merja Heinäniemi.


Genome Biology | 2007

Meta-analysis of primary target genes of peroxisome proliferator-activated receptors

Merja Heinäniemi; J Oskari Uski; Tatjana Degenhardt; Carsten Carlberg

BackgroundPeroxisome proliferator-activated receptors (PPARs) are known for their critical role in the development of diseases, such as obesity, cardiovascular disease, type 2 diabetes and cancer. Here, an in silico screening method is presented, which incorporates experiment- and informatics-derived evidence, such as DNA-binding data of PPAR subtypes to a panel of PPAR response elements (PPREs), PPRE location relative to the transcription start site (TSS) and PPRE conservation across multiple species, for more reliable prediction of PPREs.ResultsIn vitro binding and in vivo functionality evidence agrees with in silico predictions, validating the approach. The experimental analysis of 30 putative PPREs in eight validated PPAR target genes indicates that each gene contains at least one functional, strong PPRE that occurs without positional bias relative to the TSS. An extended analysis of the cross-species conservation of PPREs reveals limited conservation of PPRE patterns, although PPAR target genes typically contain strong or multiple medium strength PPREs. Human chromosome 19 was screened using this method, with validation of six novel PPAR target genes.ConclusionAn in silico screening approach is presented, which allows increased sensitivity of PPAR binding site and target gene detection.


Advances in Cancer Research | 2014

Role of the Keap1-Nrf2 pathway in cancer.

Hanna Leinonen; Emilia Kansanen; Petri Pölönen; Merja Heinäniemi; Anna-Liisa Levonen

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway is one of the major signaling cascades involved in cell defense and survival against endogenous and exogenous stress. While Nrf2 and its target genes provide protection against various age-related diseases including tumorigenesis, constitutively active Nrf2 in cancer cells increases the expression of cytoprotective genes and, consequently, enhances proliferation via metabolic reprogramming and inhibition of apoptosis. Herein, we review the current understanding of the regulation of Nrf2 in normal cells as well as its dual role in cancer. Furthermore, the mechanisms of Nrf2 dysregulation in cancer, consequences of unchecked Nrf2 activity, and therapies targeting the Keap1-Nrf2 system are discussed.


Nature Methods | 2013

Gene-pair expression signatures reveal lineage control

Merja Heinäniemi; Matti Nykter; Roger Kramer; Anke Wienecke-Baldacchino; Lasse Sinkkonen; Joseph Xu Zhou; Richard Kreisberg; Stuart A. Kauffman; Sui Huang; Ilya Shmulevich

The distinct cell types of multicellular organisms arise due to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We compiled a resource of curated human expression data comprising 166 cell types and 2,602 transcription regulating genes and developed a data driven method built around the concept of expression reversal defined at the level of gene pairs, such as those participating in toggle switch circuits. This approach allows us to organize the cell types into their ontogenetic lineage-relationships and to reflect regulatory relationships among genes that explain their ability to function as determinants of cell fate. We show that this method identifies genes belonging to regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, thus offering a novel large-scale perspective on lineage specification.The distinct cell types of multicellular organisms arise owing to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We curated human expression data comprising 166 cell types and 2,602 transcription-regulating genes and developed a data-driven method for identifying putative determinants of cell fate built around the concept of expression reversal of gene pairs, such as those participating in toggle-switch circuits. This approach allows us to organize the cell types into their ontogenic lineage relationships. Our method identifies genes in regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, and it may be useful for prioritizing candidate factors for direct conversion of cell fate.


Nucleic Acids Research | 2012

Dataset integration identifies transcriptional regulation of microRNA genes by PPARγ in differentiating mouse 3T3-L1 adipocytes

Elisabeth John; Anke Wienecke-Baldacchino; Maria Liivrand; Merja Heinäniemi; Carsten Carlberg; Lasse Sinkkonen

Peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor in mammalian adipogenesis. Genome-wide approaches have identified thousands of PPARγ binding sites in mouse adipocytes and PPARγ upregulates hundreds of protein-coding genes during adipogenesis. However, no microRNA (miRNA) genes have been identified as primary PPARγ-targets. By integration of four separate datasets of genome-wide PPARγ binding sites in 3T3-L1 adipocytes we identified 98 miRNA clusters with PPARγ binding within 50 kb from miRNA transcription start sites. Nineteen mature miRNAs were upregulated ≥2-fold during adipogenesis and for six of these miRNA loci the PPARγ binding sites were confirmed by at least three datasets. The upregulation of five miRNA genes miR-103-1 (host gene Pank3), miR-148b (Copz1), miR-182/96/183, miR-205 and miR-378 (Ppargc1b) followed that of Pparg. The PPARγ-dependence of four of these miRNA loci was demonstrated by PPARγ knock-down and the loci of miR-103-1 (Pank3), miR-205 and miR-378 (Ppargc1b) were also responsive to the PPARγ ligand rosiglitazone. Finally, chromatin immunoprecipitation analysis validated in silico predicted PPARγ binding sites at all three loci and H3K27 acetylation was analyzed to confirm the activity of these enhancers. In conclusion, we identified 22 putative PPARγ target miRNA genes, showed the PPARγ dependence of four of these genes and demonstrated three as direct PPARγ target genes in mouse adipogenesis.


BMC Genomics | 2014

Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson's disease

Abhimanyu Krishna; Maria Biryukov; Christophe Trefois; Paul Antony; Rene Hussong; Jake Lin; Merja Heinäniemi; Gustavo Glusman; Sandra Köglsberger; Olga Boyd; Bart H. J. van den Berg; Dennis Linke; David C. S. Huang; Kai Wang; Leroy Hood; Andreas Tholey; Reinhard Schneider; David J. Galas; Rudi Balling; Patrick May

BackgroundThe human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often used as a cellular model for Parkinson’s disease, the relevance of this cellular model in the context of Parkinson’s disease (PD) and other neurodegenerative diseases has not yet been systematically evaluated.ResultsWe have used a systems genomics approach to characterize the SH-SY5Y cell line using whole-genome sequencing to determine the genetic content of the cell line and used transcriptomics and proteomics data to determine molecular correlations. Further, we integrated genomic variants using a network analysis approach to evaluate the suitability of the SH-SY5Y cell line for perturbation experiments in the context of neurodegenerative diseases, including PD.ConclusionsThe systems genomics approach showed consistency across different biological levels (DNA, RNA and protein concentrations). Most of the genes belonging to the major Parkinson’s disease pathways and modules were intact in the SH-SY5Y genome. Specifically, each analysed gene related to PD has at least one intact copy in SH-SY5Y. The disease-specific network analysis approach ranked the genetic integrity of SH-SY5Y as higher for PD than for Alzheimer’s disease but lower than for Huntington’s disease and Amyotrophic Lateral Sclerosis for loss of function perturbation experiments.


Nucleic Acids Research | 2011

Cyclical regulation of the insulin-like growth factor binding protein 3 gene in response to 1α,25-dihydroxyvitamin D3

Marjo Malinen; Jussi Ryynänen; Merja Heinäniemi; Sami Väisänen; Carsten Carlberg

The nuclear receptor vitamin D receptor (VDR) is known to associate with two vitamin D response element (VDRE) containing chromatin regions of the insulin-like growth factor binding protein 3 (IGFBP3) gene. In non-malignant MCF-10A human mammary cells, we show that the natural VDR ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) causes cyclical IGFBP3 mRNA accumulation with a periodicity of 60 min, while in the presence of the potent VDR agonist Gemini the mRNA is continuously accumulated. Accordingly, VDR also showed cyclical ligand-dependent association with the chromatin regions of both VDREs. Histone deacetylases (HDACs) play an important role both in VDR signalling and in transcriptional cycling. From the 11 HDAC gene family members, only HDAC4 and HDAC6 are up-regulated in a cyclical fashion in response to 1α,25(OH)2D3, while even these two genes do not respond to Gemini. Interestingly, HDAC4 and HDAC6 proteins show cyclical VDR ligand-induced association with both VDRE regions of the IGFBP3 gene, which coincides with histone H4 deacetylation on these regions. Moreover, combined silencing of HDAC4 and HDAC6 abolishes the cycling of the IGFBP3 gene. We assume that due to more efficient VDR interaction, Gemini induces longer lasting chromatin activation and therefore no transcriptional cycling but monotonically increasing IGFBP3 mRNA. In conclusion, 1α,25(OH)2D3 regulates IGFBP3 transcription through short-term cyclical association of VDR, HDAC4 and HDAC6 to both VDRE-containing chromatin regions.


PLOS ONE | 2010

Time-resolved expression profiling of the nuclear receptor superfamily in human adipogenesis.

Mari Lahnalampi; Merja Heinäniemi; Lasse Sinkkonen; Martin Wabitsch; Carsten Carlberg

Background The differentiation of fibroblast-like pre-adipocytes to lipid-loaded adipocytes is regulated by a network of transcription factors, the most prominent one being the nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ. However, many of the other 47 members of the nuclear receptor superfamily have an impact on adipogenesis, which in human cells has not been investigated in detail. Methodology/Principal Findings We analyzed by quantitative PCR all human nuclear receptors at multiple time points during differentiation of SGBS pre-adipocytes. The earliest effect was the down-regulation of the genes RARG, PPARD, REV-ERBA, REV-ERBB, VDR and GR followed by the up-regulation of PPARG, LXRA and AR. These observations are supported with data from 3T3-L1 mouse pre-adipocytes and primary human adipocytes. Investigation of the effects of the individual differentiation mix components in short-term treatments and of their omission from the full mix showed that the expression levels of the early-regulated nuclear receptor genes were most affected by the glucocorticoid receptor (GR) ligand cortisol and the phosophodiesterase inhibitor IBMX. Interestingly, the effects of both compounds converged to repress the genes PPARD, REV-ERBA, REV-ERBB, VDR and GR, whereas cortisol and IBMX showed antagonistic interaction for PPARG, LXRA and AR causing a time lag in their up-regulation. We hypothesize that the well-known auto-repression of GR fine-tunes the detected early responses. Consistently, chromatin immunoprecipitation experiments showed that GR association increased on the transcription start sites of the genes RARG, REV-ERBB, VDR and GR. Conclusions/Significance Adipocyte differentiation is a process, in which many members of the nuclear receptor superfamily change their mRNA expression. The actions of cortisol and IBMX converged to repress several nuclear receptors early in differentiation, while up-regulation of other nuclear receptor genes showed a time lag due to antagonisms of the signals. Our results place GR and its ligand cortisol as central regulatory factors controlling early regulatory events in human adipogenesis that precedes the regulation of the later events by PPARG.


Nucleic Acids Research | 2014

Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network

Mafalda Sofia Galhardo; Lasse Sinkkonen; Philippe Berninger; Jake Lin; Thomas Sauter; Merja Heinäniemi

Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.


Biochemical Society Transactions | 2015

Dysregulation of the Keap1–Nrf2 pathway in cancer

Hanna Leinonen; Emilia Kansanen; Petri Pölönen; Merja Heinäniemi; Anna-Liisa Levonen

Accumulating evidence suggests that dysregulation of the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) pathway resulting in constitutively active Nrf2 and increased expression of cytoprotective Nrf2 target genes, has a pivotal role in cancer. Cancer cells are able to hijack the Keap1-Nrf2 system via multiple mechanisms leading to enhanced chemo- and radio-resistance and proliferation via metabolic reprogramming as well as inhibition of apoptosis. In this mini-review, we will describe the mechanisms leading to increased Nrf2 activity in cancer with a focus on the information achieved from large-scale multi-omics projects across various cancer types.


PLOS ONE | 2014

Prenatal Metformin Exposure in a Maternal High Fat Diet Mouse Model Alters the Transcriptome and Modifies the Metabolic Responses of the Offspring

Henriikka Salomäki; Merja Heinäniemi; Laura H. Vähätalo; Liisa Ailanen; Kim Eerola; Suvi T. Ruohonen; Ullamari Pesonen; Markku Koulu

Aims Despite the wide use of metformin in metabolically challenged pregnancies, the long-term effects on the metabolism of the offspring are not known. We studied the long-term effects of prenatal metformin exposure during metabolically challenged pregnancy in mice. Materials and Methods Female mice were on a high fat diet (HFD) prior to and during the gestation. Metformin was administered during gestation from E0.5 to E17.5. Male and female offspring were weaned to a regular diet (RD) and subjected to HFD at adulthood (10-11 weeks). Body weight and several metabolic parameters (e.g. body composition and glucose tolerance) were measured during the study. Microarray and subsequent pathway analyses on the liver and subcutaneous adipose tissue of the male offspring were performed at postnatal day 4 in a separate experiment. Results Prenatal metformin exposure changed the offsprings response to HFD. Metformin exposed offspring gained less body weight and adipose tissue during the HFD phase. Additionally, prenatal metformin exposure prevented HFD-induced impairment in glucose tolerance. Microarray and annotation analyses revealed metformin-induced changes in several metabolic pathways from which electron transport chain (ETC) was prominently affected both in the neonatal liver and adipose tissue. Conclusion This study shows the beneficial effects of prenatal metformin exposure on the offsprings glucose tolerance and fat mass accumulation during HFD. The transcriptome data obtained at neonatal age indicates major effects on the genes involved in mitochondrial ATP production and adipocyte differentiation suggesting the mechanistic routes to improved metabolic phenotype at adulthood.

Collaboration


Dive into the Merja Heinäniemi's collaboration.

Top Co-Authors

Avatar

Olli Lohi

University of Tampere

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petri Pölönen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Mehtonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Sauter

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Carsten Carlberg

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge