Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merlin C. Thomas is active.

Publication


Featured researches published by Merlin C. Thomas.


Circulation Research | 2003

A Breaker of Advanced Glycation End Products Attenuates Diabetes-Induced Myocardial Structural Changes

Riccardo Candido; Josephine M. Forbes; Merlin C. Thomas; Vicki Thallas; Rachael G. Dean; Wendy C. Burns; Christos Tikellis; Rebecca H. Ritchie; Stephen M. Twigg; Mark E. Cooper; Louise M. Burrell

&NA; The formation of advanced glycation end products (AGEs) on extracellular matrix components leads to accelerated increases in collagen cross linking that contributes to myocardial stiffness in diabetes. This study determined the effect of the crosslink breaker, ALT‐711 on diabetes‐induced cardiac disease. Streptozotocin diabetes was induced in Sprague‐Dawley rats for 32 weeks. Treatment with ALT‐711 (10 mg/kg) was initiated at week 16. Diabetic hearts were characterized by increased left ventricular (LV) mass and brain natriuretic peptide (BNP) expression, decreased LV collagen solubility, and increased collagen III gene and protein expression. Diabetic hearts had significant increases in AGEs and increased expression of the AGE receptors, RAGE and AGE‐R3, in association with increases in gene and protein expression of connective tissue growth factor (CTGF). ALT‐711 treatment restored LV collagen solubility and cardiac BNP in association with reduced cardiac AGE levels and abrogated the increase in RAGE, AGE‐R3, CTGF, and collagen III expression. The present study suggests that AGEs play a central role in many of the alterations observed in the diabetic heart and that cleavage of preformed AGE crosslinks with ALT‐711 leads to attenuation of diabetes‐associated cardiac abnormalities in rats. This provides a potential new therapeutic approach for cardiovascular disease in human diabetes. (Circ Res. 2003;92:785–792.)


Diabetes | 2009

The Presence and Severity of Chronic Kidney Disease Predicts All-Cause Mortality in Type 1 Diabetes

Per-Henrik Groop; Merlin C. Thomas; John Moran; Johan Wadén; Lena M. Thorn; Ville Petteri Mäkinen; Milla Rosengård-Bärlund; Markku Saraheimo; Kustaa Hietala; Outi Heikkilä; Carol Forsblom

OBJECTIVES This study aimed to identify clinical features associated with premature mortality in a large contemporary cohort of adults with type 1 diabetes. RESEARCH DESIGN AND METHODS The Finnish Diabetic Nephropathy (FinnDiane) study is a national multicenter prospective follow-up study of 4,201 adults with type 1 diabetes from 21 university and central hospitals, 33 district hospitals, and 26 primary health care centers across Finland. RESULTS During a median 7 years of follow-up, there were 291 deaths (7%), 3.6-fold (95% CI 3.2–4.0) more than that observed in the age- and sex-matched general population. Excess mortality was only observed in individuals with chronic kidney disease. Individuals with normoalbuminuria showed no excess mortality beyond the general population (standardized mortality ratio [SMR] 0.8, 95% CI 0.5–1.1), independent of the duration of diabetes. The presence of microalbuminuria, macroalbuminuria, and end-stage kidney disease was associated with 2.8, 9.2, and 18.3 times higher SMR, respectively. The increase in mortality across each stage of albuminuria was equivalent to the risk conferred by preexisting macrovascular disease. In addition, the glomerular filtration rate was independently associated with mortality, such that individuals with impaired kidney function, as well as those demonstrating hyperfiltration, had an increased risk of death. CONCLUSIONS An independent graded association was observed between the presence and severity of kidney disease and mortality in a large contemporary cohort of individuals with type 1 diabetes. These findings highlight the clinical and public health importance of chronic kidney disease and its prevention in the management of type 1 diabetes.


Diabetes | 2008

Receptor for Advanced Glycation End Products (RAGE) Deficiency Attenuates the Development of Atherosclerosis in Diabetes

Aino Soro-Paavonen; Anna Watson; Jiaze Li; Karri Paavonen; A Koitka; Anna C. Calkin; David Barit; Melinda T. Coughlan; Brian G. Drew; Graeme I. Lancaster; Merlin C. Thomas; Josephine M. Forbes; Peter P. Nawroth; Angelika Bierhaus; Mark E. Cooper; Karin Jandeleit-Dahm

OBJECTIVE—Activation of the receptor for advanced glycation end products (RAGE) in diabetic vasculature is considered to be a key mediator of atherogenesis. This study examines the effects of deletion of RAGE on the development of atherosclerosis in the diabetic apoE−/− model of accelerated atherosclerosis. RESEARCH DESIGN AND METHODS—ApoE−/− and RAGE−/−/apoE−/− double knockout mice were rendered diabetic with streptozotocin and followed for 20 weeks, at which time plaque accumulation was assessed by en face analysis. RESULTS—Although diabetic apoE−/− mice showed increased plaque accumulation (14.9 ± 1.7%), diabetic RAGE−/−/apoE−/− mice had significantly reduced atherosclerotic plaque area (4.9 ± 0.4%) to levels not significantly different from control apoE−/− mice (4.3 ± 0.4%). These beneficial effects on the vasculature were associated with attenuation of leukocyte recruitment; decreased expression of proinflammatory mediators, including the nuclear factor-κB subunit p65, VCAM-1, and MCP-1; and reduced oxidative stress, as reflected by staining for nitrotyrosine and reduced expression of various NADPH oxidase subunits, gp91phox, p47phox, and rac-1. Both RAGE and RAGE ligands, including S100A8/A9, high mobility group box 1 (HMGB1), and the advanced glycation end product (AGE) carboxymethyllysine were increased in plaques from diabetic apoE−/− mice. Furthermore, the accumulation of AGEs and other ligands to RAGE was reduced in diabetic RAGE−/−/apoE−/− mice. CONCLUSIONS—This study provides evidence for RAGE playing a central role in the development of accelerated atherosclerosis associated with diabetes. These findings emphasize the potential utility of strategies targeting RAGE activation in the prevention and treatment of diabetic macrovascular complications.


The Journal of Clinical Endocrinology and Metabolism | 2008

Low testosterone levels are common and associated with insulin resistance in men with diabetes.

Mathis Grossmann; Merlin C. Thomas; Sianna Panagiotopoulos; Ken Sharpe; Richard J. MacIsaac; Sophie Clarke; Jeffrey D. Zajac; George Jerums

CONTEXT Low testosterone levels are common in men with type 2 diabetes and may be associated with insulin resistance. OBJECTIVE We investigated prevalence of testosterone deficiency and the relationship between testosterone and insulin resistance in a large cohort of men with type 2 and type 1 diabetes. DESIGN The study was a cross-sectional survey of 580 men with type 2 diabetes and 69 men with type 1 diabetes. A subgroup of 262 men with type 2 diabetes was then reassessed after a median of 6 months. RESULTS Forty-three percent of men with type 2 diabetes had a reduced total testosterone, and 57% had a reduced calculated free testosterone. Only 7% of men with type 1 diabetes had low total testosterone. By contrast, 20.3% of men with type 1 diabetes had low calculated free testosterone, similar to that observed in type 2 diabetes (age-body mass index adjusted odds ratio = 1.4; 95% confidence interval = 0.7-2.9). Low testosterone levels were independently associated with insulin resistance in men with type 1 diabetes as well as type 2 diabetes. Serial measurements also revealed an inverse relationship between changes in testosterone levels and insulin resistance. CONCLUSIONS Testosterone deficiency is common in men with diabetes, regardless of the type. Testosterone levels are partly influenced by insulin resistance, which may represent an important avenue for intervention, whereas the utility of testosterone replacement remains to be established in prospective trials.


Journal of The American Society of Nephrology | 2003

Role of Advanced Glycation End Products in Diabetic Nephropathy

Josephine M. Forbes; Mark E. Cooper; Matthew D. Oldfield; Merlin C. Thomas

Nonenzymatic reactions between sugars and the free amino groups on proteins, lipids, and nucleic acids result in molecular dysfunction through the formation of advanced glycation end products (AGE). AGE have a wide range of chemical, cellular, and tissue effects through changes in charge, solubility, and conformation that characterize molecular senescence. AGE also interact with specific receptors and binding proteins to influence the expression of growth factors and cytokines, including TGF-beta1 and CTGF, thereby regulating the growth and proliferation of the various renal cell types. It seems that many of the pathogenic changes that occur in diabetic nephropathy may be induced by AGE. Drugs that either inhibit the formation of AGE or break AGE-induced cross-links have been shown to be renoprotective in experimental models of diabetic nephropathy. AGE are able to stimulate directly the production of extracellular matrix and inhibit its degradation. AGE modification of matrix proteins is also able to disrupt matrix-matrix and matrix-cell interactions, contributing to their profibrotic action. In addition, AGE significantly interact with the renin-angiotensin system. Recent studies have suggested that angiotensin-converting enzyme inhibitors are able to reduce the accumulation of AGE in diabetes, possibly via the inhibition of oxidative stress. This interaction may be a particularly important pathway for the development of AGE-induced damage, as it also can be attenuated by antioxidant therapy. In addition to being a consequence of oxidative stress, it is now clear that AGE can promote the generation of reactive oxygen species. It is likely that therapies that inhibit the formation of AGE will form an important part of future therapy in patients with diabetes, acting synergistically with conventional approaches to prevent diabetic renal injury.


The FASEB Journal | 2003

The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes

Josephine M. Forbes; Vicki Thallas; Merlin C. Thomas; Hank W. Founds; Wendy C. Burns; George Jerums; Mark E. Cooper

Renal accumulation of advanced glycation end products (AGEs) has been linked to the progression of diabetic nephropathy. Cleavage of pre‐formed AGEs within the kidney by a crosslink breaker, such as ALT‐711, may confer renoprotection in diabetes. STZ diabetic rats were randomized into a) no treatment (D); b) treatment with the AGE cross‐link breaker, ALT‐711, weeks 16–32 (DALT early); and c) ALT‐711, weeks 24–32 (DALT late). Treatment with ALT‐711 resulted in a significant reduction in diabetes‐induced serum and renal AGE peptide fluorescence, associated with decreases in renal carboxymethyllysine and RAGE immunostaining. Cross‐linking of tail tendon collagen seen in diabetic groups was attenuated only by 16 weeks of ALT‐711 treatment. ALT‐711, independent of treatment duration, retarded albumin excretion rate (AER), reduced blood pressure, and renal hypertrophy. It also reduced diabetes‐induced increases in gene expression of transforming growth factor β1 (TGF‐β1), connective tissue growth factor (CTGF), and collagen IV. However, glomerulosclerotic index, tubulointerstitial area, total renal collagen, nitrotyrosine, protein expression of collagen IV, and TGF‐β1 only showed improvement with early ALT treatment alone. This study demonstrates the utility of a cross‐link breaker as a treatment for diabetic nephropathy and describes effects not only on renal AGEs but on putative mediators of renal injury, such as prosclerotic cytokines and oxidative stress.


Diabetes | 2011

miR-200a Prevents Renal Fibrogenesis Through Repression of TGF-β2 Expression

Bo Wang; Philip Koh; Catherine E. Winbanks; Melinda T. Coughlan; Aaron McClelland; Anna Watson; Karin Jandeleit-Dahm; Wendy C. Burns; Merlin C. Thomas; Mark E. Cooper; Phillip Kantharidis

OBJECTIVE Progressive fibrosis in the diabetic kidney is driven and sustained by a diverse range of profibrotic factors. This study examines the critical role of microRNAs (miRNAs) in the regulation of the key fibrotic mediators, TGF-β1 and TGF-β2. RESEARCH DESIGN AND METHODS Rat proximal-tubular epithelial cells (NRK52E) were treated with TGF-β1 and TGF-β2 for 3 days, and expression of markers of epithelial-to-mesenchymal transition (EMT) and fibrogenesis were assessed by RT-PCR and Western blotting. The expression of miR-141 and miR-200a was also assessed, as was their role as translational repressors of TGF-β signaling. Finally, these pathways were explored in two different mouse models, representing early and advanced diabetic nephropathy. RESULTS Both TGF-β1 and TGF-β2 induced EMT and fibrogenesis in NRK52E cells. TGF-β1 and TGF-β2 also downregulated expression of miR-200a. The importance of these changes was demonstrated by the finding that ectopic expression miR-200a downregulated smad-3 activity and the expression of matrix proteins and prevented TGF-β–dependent EMT. miR-200a also downregulated the expression of TGF-β2, via direct interaction with the 3′ untranslated region of TGF-β2. The renal expression of miR-141 and miR-200a was also reduced in mouse models representing early and advanced kidney disease. CONCLUSIONS miR-200a and miR-141 significantly impact on the development and progression of TGF-β–dependent EMT and fibrosis in vitro and in vivo. These miRNAs appear to be intricately involved in fibrogenesis, both as downstream mediators of TGF-β signaling and as components of feedback regulation, and as such represent important new targets for the prevention of progressive kidney disease in the context of diabetes.


Journal of The American Society of Nephrology | 2006

Connective Tissue Growth Factor Plays an Important Role in Advanced Glycation End Product–Induced Tubular Epithelial-to-Mesenchymal Transition: Implications for Diabetic Renal Disease

Wendy C. Burns; Stephen M. Twigg; Josephine M. Forbes; Josefa Pete; Christos Tikellis; Vicki Thallas-Bonke; Merlin C. Thomas; Mark E. Cooper; Phillip Kantharidis

Epithelial-to-mesenchymal transition (EMT) of tubular cells contributes to the renal accumulation of matrix protein that is associated with diabetic nephropathy. Both TGF-beta1 and advanced glycation end products (AGE) are able to induce EMT in cell culture. This study examined the role of the prosclerotic growth factor connective tissue growth factor (CTGF) as a downstream mediator of these processes. EMT was assessed by the expression of alpha-smooth muscle actin, vimentin, E-cadherin, and matrix proteins and the induction of a myofibroblastic phenotype. CTGF, delivered in an adenovirus or as recombinant human CTGF (250 ng/ml), was shown to induce a partial EMT. This was not blocked by neutralizing anti-TGF-beta1 antibodies, suggesting that this action was TGF-beta1 independent. NRK-52E cells that were exposed to AGE-modified BSA (AGE-BSA; 40 microM) or TGF-beta1 (10 ng/ml) also underwent EMT. This was associated with the induction of CTGF gene and protein expression. Transfection with siRNA to CTGF was able to attenuate EMT-associated phenotypic changes after treatment with AGE or TGF-beta1. These in vitro effects correlate with the in vivo finding of increased CTGF expression in the diabetic kidney, which co-localizes on the tubular epithelium with sites of EMT. In addition, inhibition of AGE accumulation was able to reduce CTGF expression and attenuate renal fibrosis in experimental diabetes. These findings suggest that CTGF represents an important independent mediator of tubular EMT, downstream of the actions of AGE or TGF-beta1. This interaction is likely to play an important role in progressive diabetic nephropathy and strengthens the rationale to consider CTGF as a potential target for the treatment of diabetic nephropathy.


Diabetes Care | 2011

Dietary salt intake and mortality in patients with type 2 diabetes.

Elif I. Ekinci; Sophie Clarke; Merlin C. Thomas; John Moran; Karey Cheong; Richard J. MacIsaac; George Jerums

OBJECTIVE Many guidelines recommend that patients with type 2 diabetes should aim to reduce their intake of salt. However, the precise relationship between dietary salt intake and mortality in patients with type 2 diabetes has not been previously explored. RESEARCH DESIGN AND METHODS Six hundred and thirty-eight patients attending a single diabetes clinic were followed in a prospective cohort study. Baseline sodium excretion was estimated from 24-h urinary collections (24hUNa). The predictors of all-cause and cardiovascular mortality were determined by Cox regression and competing risk modeling, respectively. RESULTS The mean baseline 24hUNa was 184 ± 73 mmol/24 h, which remained consistent throughout the follow-up (intraindividual coefficient of variation [CV] 23 ± 11%). Over a median of 9.9 years, there were 175 deaths, 75 (43%) of which were secondary to cardiovascular events. All-cause mortality was inversely associated with 24hUNa, after adjusting for other baseline risk factors (P < 0.001). For every 100 mmol rise in 24hUNa, all-cause mortality was 28% lower (95% CI 6–45%, P = 0.02). After adjusting for the competing risk of noncardiovascular death and other predictors, 24hUNa was also significantly associated with cardiovascular mortality (sub-hazard ratio 0.65 [95% CI 0.44–0.95]; P = 0.03). CONCLUSIONS In patients with type 2 diabetes, lower 24-h urinary sodium excretion was paradoxically associated with increased all-cause and cardiovascular mortality. Interventional studies are necessary to determine if dietary salt has a causative role in determining adverse outcomes in patients with type 2 diabetes and the appropriateness of guidelines advocating salt restriction in this setting.


Diabetes Care | 2011

The Association Between Dietary Sodium Intake, ESRD, and All-Cause Mortality in Patients With Type 1 Diabetes

Merlin C. Thomas; John Moran; Carol Forsblom; Valma Harjutsalo; Lena M. Thorn; Aila J. Ahola; Johan Wadén; Nina Tolonen; Markku Saraheimo; Daniel Gordin; Per-Henrik Groop

OBJECTIVE Many guidelines recommend reduced consumption of salt in patients with type 1 diabetes, but it is unclear whether dietary sodium intake is associated with mortality and end-stage renal disease (ESRD). RESEARCH DESIGN AND METHODS In a nationwide multicenter study (the FinnDiane Study) between 1998 and 2002, 2,807 enrolled adults with type 1 diabetes without ESRD were prospectively followed. Baseline urinary sodium excretion was estimated on a 24-h urine collection. The predictors of all-cause mortality and ESRD were determined by Cox regression and competing risk modeling, respectively. RESULTS The median follow-up for survival analyses was 10 years, during which 217 deaths were recorded (7.7%). Urinary sodium excretion was nonlinearly associated with all-cause mortality, such that individuals with the highest daily urinary sodium excretion, as well as the lowest excretion, had reduced survival. This association was independent age, sex, duration of diabetes, the presence and severity of chronic kidney disease (CKD) (estimated glomerular filtration rate [eGFR] and log albumin excretion rate), the presence of established cardiovascular disease, and systolic blood pressure. During follow-up, 126 patients developed ESRD (4.5%). Urinary sodium excretion was inversely associated with the cumulative incidence of ESRD, such that individuals with the lowest sodium excretion had the highest cumulative incidence of ESRD. CONCLUSIONS In patients with type 1 diabetes, sodium was independently associated with all-cause mortality and ESRD. Although we have not demonstrated causality, these findings support the calls for caution before applying salt restriction universally. Clinical trials must be performed in diabetic patients to formally test the utility/risk of sodium restriction in this setting.

Collaboration


Dive into the Merlin C. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Tikellis

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge