Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merrill B. Hille is active.

Publication


Featured researches published by Merrill B. Hille.


Current Biology | 2000

Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction.

Clarissa A. Henry; Lissa Ann Hall; Merrill B. Hille; Lila Solnica-Krezel; Mark S. Cooper

In vertebrates, paraxial mesoderm is partitioned into repeating units called somites. It is thought that the mechanical forces arising from compaction of the presumptive internal cells of prospective somites cause them to detach from the unsegmented presomitic mesoderm [1-3]. To determine how prospective somites physically segregate from each other, we used time-lapse microscopy to analyze the mechanics underlying early somitogenesis in wild-type zebrafish and in the mutants trilobite(m209) (tri), knypek(m119) (kny), and kny;tri, which are defective in convergent extension during gastrulation. Formation of somite boundaries in all of these embryos involved segregation, local alignment, and cell-shape changes of presumptive epitheloid border cells along nascent intersomitic boundaries. Although kny;tri somites formed without convergence of the presomitic mesoderm and were composed of only two cells in their anteroposterior (AP) dimension, they still exhibited AP intrasegmental polarity. Furthermore, morphogenesis of somite boundaries in these embryos proceeded in a manner similar to that in wild-type embryos. Thus, intersomitic boundary formation in zebrafish involves short-range movements of presumptive border cells that do not require mechanical forces generated by internal cells or compaction of the presomitic mesoderm.


Developmental Biology | 1983

The cytoskeletal framework of sea urchin eggs and embryos: Developmental changes in the association of messenger RNA☆

Randall T. Moon; Roberto F. Nicosia; Cherie L. Olsen; Merrill B. Hille; William R. Jeffery

Extraction of sea urchin eggs and embryos with Triton X-100 generated a cytoskeletal framework (CSK) composed of a cortical filamentous network and an internal system of filaments associated with ribosomes. The CSK contained only 10-20% of the cellular protein, RNA, and lipid. A specific subset of proteins was enriched in the CSK. Several lines of evidence suggest that mRNA is a component of the CSK of both eggs and embryos. First, the CSK contained poly(A) sequences which hybridized with [3H]poly(U). Second, the CSK contained polyribosomes. Finally, RNA extracted from the CSK showed translational activity in an in vitro system. The nonhistone messages present in the CSK were qualitatively similar to those solubilized by detergent, as determined by separation on polyacrylamide gels of the products of in vitro translation. In the unfertilized egg, most mRNA was present as nonpolyribosomal messenger ribonucleoprotein complexes which, along with monoribosomes, were efficiently extracted by Triton X-100. The converse was found in blastulae, as most of the mRNA was present as polyribosomes associated with the CSK, although monoribosomes were still efficiently extracted by detergent. These results indicate a correlation between the activation of protein synthesis in eggs and the association of polyribosomes with the CSK.


Developmental Biology | 1982

An assessment of the masked message hypothesis: sea urchin egg messenger ribonucleoprotein complexes are efficient templates for in vitro protein synthesis.

Randall T. Moon; Michael V. Danilchik; Merrill B. Hille

Abstract The rate of protein synthesis in unfertilized sea urchin eggs is very low, although all components for protein synthesis are present. To determine whether egg messenger RNAs are unavailable for translation because of “masking” by phenol-soluble inhibitors, crude and purified nonpolyribosomal messenger ribonucleoprotein complexes (mRNPs) from eggs of Strongylocentrotus purpuratus were translated in vitro in a wheat germ cell-free system. Crude and purified egg mRNPs were nearly as translatable as the mRNAs extracted from the mRNPs, suggesting that the mRNPs were not masked. No difference in the relative translational activities of mRNPs and their constituent mRNAs was revealed by isolating the mRNPs in buffers of different ionic strength or in the presence of protease and ribonuclease inhibitors. Furthermore, kinetic analysis of the in vitro translation and translation of the mRNPs and mRNAs at several concentrations of K+, Mg2+, and template all indicate that mRNPs are efficient templates for directing protein synthesis. Separation on polyacrylamide gels of the products of in vitro and in vivo translation demonstrated that both mRNPs and mRNAs extracted from the mRNPs synthesized in vitro high-molecular-weight polypeptides, some of which were also synthesized in vivo. Although sea urchin egg mRNPs may not be masked, there are several alternative mechanisms for regulating translation in the egg.


Developmental Biology | 1981

Sea urchin egg and embryo ribosomes: differences in translational activity in a cell-free system.

Michael V. Danilchik; Merrill B. Hille

To determine whether ribosomes have a role in the postfertilization activation of protein synthesis in sea urchin eggs, we measured the translational activity of ribosomes isolated from unfertilized eggs and embryos of Strongylocentrotus purpuratus. Numerous previous studies have indicated few if any differences in the activity of such ribosomes. However, by using improved physiological isolation and in vitro conditions, we have found important differences in the activities of egg and embryo ribosomes. Ribosomes obtained from blastula polyribosomes were active in translating reticulocyte mRNA in a ribosome-dependent cell-free translation system, whereas ribosomes obtained from unfertilized eggs became fully active only after a characteristic, reproducible delay of up to 15 min at 26 degrees C. The extent of this delay varied with incubation pH, but not with concentrations of K+, Mg2+, initiation factors, or mRNA. However, at incubation pH between 6.90 and 7.65, the egg ribosomes were always less active than blastula ribosomes.


Developmental Biology | 1987

Evidence for simultaneous derepression of messenger RNA and the guanine nucleotide exchange factor in fertilized sea urchin eggs

Anita M. Colin; Bob D. Brown; Jaydev N. Dholakia; Charles L. Woodley; Albert J. Wahba; Merrill B. Hille

Translational control was studied in extracts of Lytechinus pictus eggs and zygotes. We showed that neither mRNA nor initiation factors alone limit translation in these lysates; rather they are together rate limiting. Added globin mRNA was translated in egg and zygote lysates but overall protein synthesis did not increase significantly as the added RNA competed with the endogenous message. The lysates mimicked the in vivo response, since microinjection of globin mRNA into L. pictus eggs similarly competed with endogenous mRNAs. A number of translational components were used to determine if they would stimulate protein synthesis in these lysates. The addition of globin polyribosomes increased the level of protein synthesis. The majority of this increase was due to reinitiation of the globin mRNA, and under these conditions the level of endogenous protein synthesis in both egg and zygote extracts did not change. The addition of crude initiation factors alone did not appreciably alter the rate of protein synthesis in the egg lysates. However, in the presence of added mRNA, these initiation factors stimulated translation two- to fourfold. Of all the initiation factors tested, only the guanine nucleotide exchange factor (GEF, eIF-2B, RF) significantly increased protein synthesis when globin mRNA was present. The addition of an unfractionated initiation factor preparation further stimulated protein synthesis in the presence of added GEF and mRNA, suggesting that a component other than mRNA and GEF was also limiting in these egg lysates. Other initiation factors, including eIF-2, eIF-4A, eIF-4B, and eIF-4F, did not substitute for the component in the unfractionated initiation factor preparation. We propose that alkalinization of the cytoplasm and the subsequent activation of initiation factors and mRNAs contribute to the large stimulation of protein synthesis in echinoid eggs after fertilization. Furthermore, we discuss the possibility that the increase in NADPH at the expense of NAD+, which occurs within 3 min after fertilization, may lead to the activation of GEF.


Developmental Biology | 1981

Translational control in sea urchin eggs and embryos: Initiation is rate limiting in blastula stage embryos☆

Merrill B. Hille; D. C. Hall; Zipora Yablonka-Reuveni; Michael V. Danilchik; Randall T. Moon

To determine whether initiation is rate-limiting in protein synthesis during the embryogenesis of sea urchins, polyribosome profiles of unfertilized eggs and cleavage, blastula and prism stage embryos were examined after incubation of the eggs and embryos in the presence and absence of low amounts of emetine, an inhibitor of polypeptide elongation. The ribosomes were radioactively labeled with [3H]uridine by injection of the adults during oogenesis so that we could monitor emetine-dependent shifts of monoribosomes to polyribosomes. Although initiation is not rate limiting in unfertilized eggs or 2- to 16-cell embryos of Strongylocentrotus purpuratus, it is rate limiting in blastula and prism embryos. We suggest that initiation becomes rate limiting to allow the selective translation of certain classes of mRNA during later development.


Mechanisms of Development | 1989

Developmentally regulated proteolytic processing of a yolk glycoprotein complex in embryos of the sea urchin, Strongylocentrotus purpuratus.

Geoffrey F. Lee; Elinor W. Fanning; Maureen P. Small; Merrill B. Hille

We have isolated a yolk glycoprotein complex from eggs and early embryos of the sea urchin, Strongylocentrotus purpuratus. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of these complexes and peptide mapping of their individual glycoprotein components indicate that developmental stage-specific changes in molecular composition of the complex are due to proteolytic processing events. Our data revealed that a 180 kDa glycoprotein of the egg complex is separated by a single proteolytic cleavage into intermediate glycoproteins of 115 and 76 kDa early in development. By the hatched blastula stage, each of these intermediate glycoproteins has been further processed to lower molecular weight forms: the 115 kDa protein is proteolytically clipped to a 84 kDa form, perhaps through 110 and 105 kDa intermediaries, while the 76 kDa molecule is directly processed to a 65 kDa form.


Cell Adhesion and Communication | 1995

Gastrulation in the Sea Urchin, Strongylocentrotus purpuratus, Is Disrupted by the Small Laminin Peptides YIGSR and IKVAV

Richard L. Hawkins; Jianguo Fan; Merrill B. Hille

Laminin is present on the apical and basolateral sides of epithelial cells of very early sea urchin blastulae. We investigated whether small laminin-peptides, known to have cell binding activities, alter the development of sea urchin embryos. The peptide YIGSR-NH2 (850 microM) and the peptide PA22-2 (5 microM), which contains the peptide sequence IKVAV (Tashiro et al., J. Biol. Chem. 264, 16174, 1989), typically blocked archenteron formation when added to the sea water soon after fertilization. At lower doses, the YIGSR peptide allowed invagination of the archenteron but blocked archenteron extension and differentiation and evagination of the feeding arms. The effect of YIGSR and PA22-2 peptides declined when added to progressively older stages until no effect was seen when added at the mesenchyme blastula stage (24 hours after fertilization). Control peptides GRGDS, YIGSE, and SHA22, a dodeca-peptide with a scrambled IKVAV sequence, had no effect on development. The YIGSK peptide containing a conserved amino acid modification had only a small effect on gastrulation. The results suggest that YIGSR and IKVAV peptides specifically disrupt cell/extracellular matrix interactions required for normal development of the archenteron and feeding arms. Our recent finding that YTGIR is at the cell binding site of the B1 chain of S. purpuratus laminin supports this conclusion. Evidently, laminin or other laminin-like molecules are among the many extracellular matrix components needed for the invagination and extension of the archenteron during the gastrulation movements of these embryos.


Developmental Dynamics | 2012

Cdc42 GTPase and Rac1 GTPase Act Downstream of p120 Catenin and Require GTP Exchange During Gastrulation of Zebrafish Mesoderm

Cynthia L. Hsu; Claire P. Muerdter; A. Knickerbocker; Ryan M. Walsh; Martha A. Zepeda‐Rivera; Kevin H. Depner; Maya Sangesland; Trinidad B. Cisneros; Ju Youn Kim; Patricia Sanchez‐Vazquez; Lidia Cherezova; Rainy D. Regan; Nadia M. Bahrami; Elizabeth A. Gray; Andrew Y. Chan; Terry Chen; Milly Y. Rao; Merrill B. Hille

Background: We investigated the roles of p120 catenin, Cdc42, Rac1, and RhoA GTPases in regulating migration of presomitic mesoderm cells in zebrafish embryos. p120 catenin has dual roles: It binds the intracellular and juxtamembrane region of cadherins to stabilize cadherin‐mediated adhesion with the aid of RhoA GTPase, and it activates Cdc42 GTPase and Rac1 GTPase in the cytosol to initiate cell motility. Results: During gastrulation of zebrafish embryos, knockdown of the synthesis of zygotic p120 catenin δ1 mRNAs with a splice‐site morpholino caused lateral widening and anterior‐posterior shortening of the presomitic mesoderm and somites and a shortened anterior‐posterior axis. These phenotypes indicate a cell‐migration effect. Co‐injection of low amounts of wild‐type Cdc42 or wild‐type Rac1 or dominant‐negative RhoA mRNAs, but not constitutively‐active Cdc42 mRNA, rescued these p120 catenin δ1‐depleted embryos. Conclusions: These downstream small GTPases require appropriate spatiotemporal stimulation or cycling of GTP to guide mesodermal cell migration. A delicate balance of Rho GTPases and p120 catenin underlies normal development. Developmental Dynamics 241:1545–1561, 2012.


Developmental Biology | 1986

Injected mRNA does not increase protein synthesis in unfertilized, fertilized, or ammonia-activated sea urchin eggs☆

Anita M. Colin; Merrill B. Hille

We have investigated whether the rate of protein synthesis in unfertilized and fertilization-activated sea urchin eggs is limited by the availability of mRNA by injecting eggs, zygotes, and ammonia-activated eggs with globin mRNA. Message-injected and buffer-injected cells were labeled with radioactive amino acids and the proteins separated on a polyacrylamide gel. The relative amounts of newly synthesized globin and endogenous proteins were obtained by scanning the gel fluorograph. Globin mRNA is translated poorly in Strongylocentrotus droebachiensis eggs and does not significantly increase or decrease endogenous protein synthesis. In zygotes and ammonia-activated eggs, however, globin mRNA is translated well and appears to compete with endogenous mRNAs for the limiting component of the translational machinery as it is released. Our results are consistent with the hypothesis that either ribosomes or recruitment factors are gradually activated after fertilization or ammonia treatment, that such components are the rate-limiting factor, and that they impart the typical sigmoidal increase in protein synthesis rate observed in fertilized eggs before the first cleavage.

Collaboration


Dive into the Merrill B. Hille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Severo Ochoa

Roche Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margarita Salas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anita M. Colin

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge