Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merritt R. Turetsky is active.

Publication


Featured researches published by Merritt R. Turetsky.


Geophysical Research Letters | 2006

Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska

Eric S. Kasischke; Merritt R. Turetsky

of more large fire events (>1,000 km 2 ). The proportion of total burned area from human-ignited fires decreased over this same time period, while the proportion of burning during the early and late- growing-seasons increased. Trends in increased burned area were consistent across the NABR ecozones, though the western ecozones experienced greater increases in larger fire years compared to the eastern ecozones. Seasonal patterns of burning differed among ecozones. Along with the climate warming, changes in the fire regime characteristics may be an important driver of future ecosystem processes in the NABR. Citation: Kasischke, E. S., and M. R. Turetsky (2006), Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, doi:10.1029/ 2006GL025677.


The Bryologist | 2003

The Role of Bryophytes in Carbon and Nitrogen Cycling

Merritt R. Turetsky

management. How does our behavior (including urban development and land-use, water consumption, pollution) influence the movement of energy, water, and elements at local, regional, national or global scales? Will perturbations to chemical and energy cycles alter existing controls on ecosystem processes, and can we learn enough about them for effective regulation? Plants are critical in regulating biogeochemical cycles. Their growth controls the exchange of gases that support life in our current biosphere, and affects soil development. As primary producers, they influence the distribution of energy for higher trophic levels. Understanding how plants influence ecosystem processes requires a multidisciplinary approach drawing on plant physiology and biochemistry, community ecology, and biogeochemistry. Due to their unique physiology and ecology, bryophytes differ from vascular plants in influencing cycles of elements, energy, and water. For example, bryophytes have evolved an effective water relation system. Poikilohydry and desiccation tolerance allow bryophytes to tolerate longer periods of water stress than vascular plants, and to recover quickly with rehydration. With poorly developed conduction systems, water and solutes are taken up over the entire plant surface. Lack of both gametophyte stomata and effective cuticles in many species allows free exchange of solutions and gases across cell surfaces. Thus bryophytes often serve as effective traps for water and nutrients. This also makes them more sensitive to atmospheric chemical deposition than vascular plants. Bryophytes also can tolerate a wide range of temperatures and are found in almost all terrestrial and aquatic environments, including harsh Antarctic environments where vascular plant cover is low (cf. Fogg 1998; Seppelt 1995). Without roots, bryophytes can colonize hard substrates like rock and wood that are poor habitat for vascular species. Bryophytes stabilize soils and prevent the loss of soil and nutrients via erosion, particularly on sand dunes (Martinez & Maun 1999) and in cryptogamic soil crusts (Eldridge 1999; Evans & Johansen 1999). Cation exchange on Sphagnum cell walls releases protons, generating acidity that may inhibit plant and microbial growth (Clymo 1963; Craigie & Maass 1966; Spearing 1972). Finally, bryophytes influence ecosystem succession (Brock & Bregman 1989) through terrestrialization of water bodies, deposition of benthic organic matter or paludification of upland systems. Bryophyte colonization often precedes the establishment of tree surfaces by other canopy-dwelling plants (Nadkarni et al. 2000). Due to their physiology and life history traits, bryophytes influence ecosystem functions by producing organic matter, stabilizing soils or debris, trapping sediments and water, and providing food and habitat for algae, fungi, invertebrates, and amphibians. In this review, my objectives are to highlight several mechanisms by which bryophytes influence carbon (C) and nitrogen (N) cycles within and fluxes from ecosystems. As such, I will focus on how bryophytes fix, intercept, transform, and/or release C and N. My goals are to 1) introduce important processes controlling inputs and outputs of C and N in both terrestrial and aquatic ecosystems, 2) review work on the growth, decomposition, and leaching of bryophyte material, as well as biotic and abiotic controls on these mechanisms, and 3) suggest areas for future research that would advance our understanding of bryophytes in biogeochemical cycling. Current address: U.S. Geological Survey, 345 Middlefield Rd. MS 962, Menlo Park, CA 94025 U.S.A. e-mail: [email protected]


Journal of Geophysical Research | 2011

Vulnerability of high‐latitude soil organic carbon in North America to disturbance

Guido Grosse; Jennifer W. Harden; Merritt R. Turetsky; A. David McGuire; Philip Camill; Charles Tarnocai; Steve Frolking; Edward A. G. Schuur; T. M. Jorgenson; Sergei Marchenko; Vladimir E. Romanovsky; Kimberly P. Wickland; Nancy H. F. French; Mark P. Waldrop; Laura L. Bourgeau-Chavez; Robert G. Striegl

[1] This synthesis addresses the vulnerability of the North American high‐latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high‐latitude SOC pools into (1) near‐surface soils where SOC is affected by seasonal freeze‐thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short‐term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high‐latitude SOC pool in North America and highlight how climate‐related disturbances could alter this pool’s character and size. Press disturbances of relatively slow but persistent nature such as top‐down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high‐latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high‐latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high‐latitude SOC pool, and discuss data and research gaps to be addressed by future research.


Global Change Biology | 2013

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones.

David Olefeldt; Merritt R. Turetsky; Patrick M. Crill; A. David McGuire

Methane (CH4 ) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.


Global Change Biology | 2014

A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands

Merritt R. Turetsky; Agnieszka Kotowska; Jill L. Bubier; Nancy B. Dise; Patrick M. Crill; Ed R.C. Hornibrook; Kari Minkkinen; Tim R. Moore; Isla H. Myers-Smith; Hannu Nykänen; David Olefeldt; Janne Rinne; Sanna Saarnio; Narasinha J. Shurpali; Eeva-Stiina Tuittila; J. Michael Waddington; Jeffrey R. White; Kimberly P. Wickland; Martin Wilmking

Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.


Nature | 2015

Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

Jenni Hultman; Mark P. Waldrop; Rachel Mackelprang; Maude M. David; Jack W. McFarland; Steven J. Blazewicz; Jennifer W. Harden; Merritt R. Turetsky; A. David McGuire; Manesh B Shah; Nathan C. VerBerkmoes; Lang Ho Lee; Konstantinos Mavrommatis; Janet K. Jansson

Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular ‘omics’ approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.


New Phytologist | 2012

The resilience and functional role of moss in boreal and arctic ecosystems

Merritt R. Turetsky; Ben Bond-Lamberty; Eugénie S. Euskirchen; Julie Talbot; Steve Frolking; A. D. McGuire; Eeva-Stiina Tuittila

Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries - permafrost formation and thaw, peat accumulation, development of microtopography - and there is a need for studies that increase our understanding of slow, long-term dynamical processes.


Nature Geoscience | 2015

Global vulnerability of peatlands to fire and carbon loss

Merritt R. Turetsky; Brian W. Benscoter; Susan Page; Guillermo Rein; Guido R. van der Werf; Adam C. Watts

The amount of carbon stored in peats exceeds that stored in vegetation. A synthesis of the literature suggests that smouldering fires in peatlands could become more common as the climate warms, and release old carbon to the air.


Wetlands | 2004

DATING RECENT PEAT DEPOSITS

Merritt R. Turetsky; Sturt W. Manning; R. Kelman Wieder

Dating recent peat deposits (i.e., past } 300 yrs of peat accumulation) has emerged as an important yet challenging task for estimating rates of organic matter accumulation and atmospheric pollutant deposition in peatlands. Due to their ombrotrophic nature and the tendency for Sphagnum-derived peat to have high cation exchange capacity, peatlands are ideal archives of atmospheric pollution. However, efforts to establish depth-age relationships in peats are complicated by the difficulty of dating deposits reliably. Assumptions underlying the techniques available for dating peat deposits often are poorly understood and generally untested. We outline the approaches used to establish depth-age relationships in peat chronologies, including brief descriptions of the theory, assumptions, methodology, and logistics of each technique. We include both continuous dating methods (i.e., methods based on 14C, 210Pb, constant bulk density, acidinsoluble ash, moss increment, pollen density) and chrono-stratigraphic markers (i.e., fallout isotopes from the Chernobyl accident and nuclear weapons testing, pollen stratigraphies, isothermal remanence magnetism, charcoal particles, spherical carbonaceous particles, PAHs, PCBs, DDT, toxaphene) that can be measured in peat and correlated temporally with known historical events. We also describe the relatively new radiocarbon application of wiggle matching and use hypothetical data to highlight the potential of this developing technique for dating recent peat. Until the uncertainty associated with each of these dating approaches is clarified, we recommend employing multiple techniques to allow for corroboration between different methods.


International Journal of Wildland Fire | 2008

Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests

Eric S. Kasischke; Merritt R. Turetsky; Roger D. Ottmar; Nancy H. F. French; Elizabeth E. Hoy; Evan S. Kane

We evaluated the utility of the composite burn index (CBI) for estimating fire severity in Alaskan black spruce forests by comparing data from 81 plots located in 2004 and 2005 fire events. We collected data to estimate the CBI and quantify crown damage, percent of trees standing after the fire, depth of the organic layer remaining after the fire, depth of burning in the surface organic layer (absolute and relative), and the substrate layer exposed by the fire. To estimate pre-fire organic layer depth, we collected data in 15 unburned stands to develop relationships between total organic layer depth and measures of the adventitious root depth above mineral soil and below the surface of the organic layer. We validated this algorithm using data collected in 17 burned stands where pre-fire organic layer depth had been measured. The average total CBI value in the black spruce stands was 2.46, with most of the variation a result of differences in the CBI observed for the substrate layer. While a quadratic equation using the substrate component of CBI was a relatively strong predictor of mineral soil exposure as a result of fire (R 2 = 0.61, P < 0.0001, F = 60.3), low correlations were found between the other measures of fire severity and the CBI (R 2 = 0.00-0.37). These results indicate that the CBI approach has limited potential for quantifying fire severity in these ecosystems, in particular organic layer consumption, which is an important factor to understand how ecosystems will respond to changing climate and fire regimes in northern regions.

Collaboration


Dive into the Merritt R. Turetsky's collaboration.

Top Co-Authors

Avatar

Jennifer W. Harden

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Evan S. Kane

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

A. David McGuire

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

A. D. McGuire

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Kristen L. Manies

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mark P. Waldrop

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Benscoter

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugénie S. Euskirchen

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge