Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merryl Alber is active.

Publication


Featured researches published by Merryl Alber.


Estuaries | 2000

Estuaries of the South Atlantic Coast of North America: Their Geographical Signatures

Richard F. Dame; Merryl Alber; Dennis M. Allen; Michael A. Mallin; Clay L. Montague; Alan J. Lewitus; Alice G. Chalmers; Robert Gardner; Craig Gilman; Björn Kjerfve; Jay Pinckney; Ned P. Smith

Estuaries of the southeastern Atlantic coastal plain are dominated by shallow meso-tidal bar-built systems interspersed with shallow sounds and both low flow coastal plain and high flow piedmont riverine systems. Three general geographical areas can be discriminated: the sounds of North Carolina; the alternating series of riverine and ocean dominated bar-built systems of South Carolina, Georgia, and northeast Florida, and the subtropical bar-built estuaries of the Florida southeast coast. The regional climate ranges from temperate to subtropical with sea level rise and hurricanes having a major impact on the regions estuaries because of its low and relatively flat geomorphology. Primary production is highest in the central region. Seagrasses are common in the northern and southern most systems, while intertidal salt marshes composed ofSpartina alterniflora reach their greatest extent and productivity in South Carolina and Georgia. Nuisance blooms (cyanobacteria, dinoflagellates, and cryptomonads) occur more frequently in the northern and extreme southern parts of the region. Fishery catches are highest in the North Carolina and Florida areas. Human population growth with its associated urbanization reaches a maximum in Florida and it is thought that the long-term sustainability of the Florida coast for human habitation will be lost within the next 25 years. Tidal flushing appears to play an important role in mitigating anthropogenic inputs in systems of moderate to high tidal range, i.e., the South Carolina and Georgia coasts. The most pressing environmental problems for the estuaries of the southeastern Atlantic coast seem to be nutrient loading and poor land use in North Carolina and high human population density and growth in Florida. The future utilization of these estuarine systems and their services will depend on the development of improved management strategies based on improved data quality.


Estuaries | 2002

A Conceptual Model of Estuarine Freshwater Inflow Management

Merryl Alber

As humans continue to influence the quantity, timing, and quality of freshwater input to estuaries, it is becoming increasingly common for policies to be enacted that mandate the establishment of freshwater inflow criteria that will serve to preserve and protect estuarine ecosystems. This paper reviews the scientific literature describing how changes in freshwater inflow affect estuaries, proposes a conceptual model that explores the roles of scientists, citizens, politicians, and managers in the management of freshwater inflow to estuaries, and uses the model to explore the ways in which freshwater inflow is managed in a variety of estuaries. The scientific review is organized to provide an overview of the connections between freshwater inflow (in terms of the quantity, quality, and timing of water delivery), estuarine conditions (such as salinity and concentrations of dissolved and particulate material), and estuarine resources (such as the distribution and abundance of organisms), and to highlight our understanding of the causative mechanisms that underlie the relationships among these variables. The premise of the conceptual model is that the goal of estuarine freshwater inflow policy is to protect those resources and functions that we as a society value in estuaries, and that management measures use scientific information about the relationships among inflow, conditions, and resources to establish inflow standards that can meet this goal. The management approach can be inflow-based (flow is kept within some prescribed bounds under the assumption that taking too much away is bad for the resources), condition-based (inflow standards are set in order to maintain specified conditions in the estuary), or resource-based (inflow standards are set based on the requirements of specific resources), but each of these is carried out by regulating inflow. This model is used as a framework to describe the development of freshwater inflow criteria for estuaries in Texas, Florida, and California.


Estuaries | 2002

A comparison of residence time calculations using simple compartment models of the Altamaha River estuary, Georgia

Joan E. Sheldon; Merryl Alber

The residence and flushing times of an estuary are two different concepts that are often confused. Flushing time is the time required for the freshwater inflow to equal the amount of freshwater originally present in the estuary. It is specific to freshwater (or materials dissolved in it) and represents the transit time through the entire system (e.g., from head of tide to the mouth). Residence time is the average time particles take to escape the estuary. It can be calculated for any type of material and will vary depending on the starting location of the material. In the literature, the term residence time is often used to refer to the average freshwater transit time and is calculated as such. Freshwater transit time is a more precise term for a type of residence time (that of freshwater, starting from the head of the estuary), whereas residence time is a more general term that must be clarified by specifying the material and starting distribution. We explored these two mixing time scales in the context of the Altmaha River estuary, Georgia, and present a comparison of techniques for their calculation (fraction of freshwater models and variations of box models). Segmented tidal prism models, another common approach, have data requirements similar to other models but can be cumbersome to implement properly. Freshwater transit time estimates from simple steady-state box models were virtually, identical to flushing times for four river-flow cases, as long as boxes were scaled appropriately to river flow, and residence time estimates from different box models were also in good agreement. Mixing time estimates from box models, were incorrect when boxes were imporperly scaled. Mixing time scales vary nonlinearly with river flow, so characterizing the range as well as the mean or median is important for a thorough understanding of the potential for within-estuary processing. We are now developing an imporved box model that will allow the calculation of a variety of mixing time scales using simulations with daily variable river discharge.


Estuaries and Coasts | 2006

The calculation of estuarine turnover times using freshwater fraction and tidal prism models: A critical evaluation

Joan E. Sheldon; Merryl Alber

Freshwater fraction and tidal prism models are simple methods for estimating the turnover time of estuarine water. The freshwater fraction method prominently features flushing by freshwater inflow and has sometimes been criticized because it appears not to include flushing by seawater, but this is accounted for implicitly because the average estuary salinity used in the calculation reflects all the processes that bring seawater into the estuary, including gravitational circulation and tidal processes. The model relies on measurable salinity differences among water masses and so must be used for estuaries with substantial freshwater inflow. Tidal prism models are based on flushing by flood tide inflow and ignore seawater inflow due to gravitational circulation. These models should only be applied to estuaries with weak or nonexistent gravitational circulation, which are generally those with little freshwater inflow. Using a framework that is less ambioguous and more directly applicable to the estimation of turnover times than those used previously, this paper critically examines the application of tidal prism models in well-mixed estuaries with complete tidal exchange, partial ebb return, or incomplete flood mixing and in partially mixed estuaries. Problems with self-consistency in earlier versions of these models also apply to the budgeting procedure used by the LOICZ (Land-Ocean Interactions in the Coastal Zone) program. Although freshwater fraction and tidal prism models are different approaches to estimating turnover times in systems with very different characteristics, consistent derivation shows that these models have much in common with each other and that they yield equivalent values that can be used to make comparisons across systems.


Estuaries | 2002

Freshwater Inflow: Science, Policy, Management

Paul A. Montagna; Merryl Alber; Peter H. Doering; Michael S. Connor

The papers in this special issue were presented in a special session during the 2001 biennial conference of the Estuarine Research Federation held in St. Pete Beach, Florida. The session, “Freshwater inflow: Science, policy and management,” was focused on issues related to reduced freshwater inflow to estuaries. The session brought together scientists, managers, and regulators, and included presentations on the estimation of freshwater input to estuaries, development of ecological indicators to assess changes in inflow, management strategies used to set freshwater requirements, and experiences with the reintroduction of freshwater to restore inflow.


Frontiers in Ecology and the Environment | 2008

Forecasting effects of sea‐level rise and windstorms on coastal and inland ecosystems

Charles S. Hopkinson; Ariel E. Lugo; Merryl Alber; Alan P. Covich; Skip J. Van Bloem

We identify a continental-scale network of sites to evaluate how two aspects of climate change – sea-level rise and intensification of windstorms – will influence the structure, function, and capacity of coastal and inland forest ecosystems to deliver ecosystem services (eg carbon sequestration, storm protection, pollution control, habitat support, food). The network consists of coastal wetland and inland forest sites across the US and is representative of continental-level gradients of precipitation, temperature, vegetation, frequency of occurrence of major windstorms, value of insured properties, tidal range, watershed land use, and sediment availability. The network would provide real-time measurements of the characteristics of sea-level rise and windstorm events and would allow an assessment of the responses of wetlands, streams, and inland forests at spatial and temporal scales associated with sustainability of ecosystem services. We illustrate the potential of this approach with examples of hypothes...


Estuaries and Coasts | 2006

Development of hypoxia in well-mixed subtropical estuaries in the Southeastern USA

Peter G. Verity; Merryl Alber; Suzanne B. Bricker

Esturies throughout much of the South Atlantic Bight (southeastern U.S.) have been considered to be relatively pristine, but are now experiencing elevated concentrations of both organic and inorganic nutrients. As is true in many parts of the world, this eutrophication is correlated with coastal population growth. These estuaries have been assumed to be immune from extended hypoxia, in large part because they are well mixed and do not generally exhibit the water column stratification that is traditionally associated with low concentrations of dissolved oxygen. data presented here show long-term (19 yr) decreases in dissolved oxygen in surface waters of the Skidaway estuary, a pattern that is occurring throughout coastal Georgia. More limited data from bottom waters exhibit the same trend. The decreases in dissolved oxygen occurred at the same time as observed increases in inorganic and organic nutrients and in bacteria concentrations, implying an increase in heterotrophic activity. These observations suggest that traditional paradigms long applied to stratified estuaries, wherein the cycle that leads to hypoxia is initiated by the uptake of inorganic nutrients by autotrophs that are then decomposed below the pycnocline, may need revision for well-mixed estuaries. Heterotrophic community metabolism, stimulated by anthropogenic loading of organic and inorganic nutrients, can overwhelm even vigorous vertical mixing and horizontal exchange to gradually cause declining oxygen concentrations and eventually hypoxia.


Estuaries and Coasts | 2006

An Investigation of Salt Marsh Dieback in Georgia Using Field Transplants

Matthew B. Ogburn; Merryl Alber

In 2001 and 2002, Georgia salt marshes experienced a dieback event that, affected more than 800 ha throughout the coastal zone. The dieback event was unprecedented in the state and affected bothSpartina alterniflora andJuncus roemerianus. A transplant study was conducted from May to October 2003 to determine if healthy plants could survive in dieback areas. Transplants were carried out at two locations on the Georgia coast in areas ofS. alterniflora dieback along the banks of tidal creeks, an area ofS. alterniflora dieback in the mid marsh, and aJ. roemerianus dieback, area in the mid marsh. Transplant survival was nearly 100% and growth (measured as increases in the height of the 5 tallest stems and the number of stems per experimental pot) was observed in both healthy (control) and dieback areas.J. roemerianus grew more slowly thanS. alterniflora, with no, observed increase in stem height and an average 38% increase in stem density as compared to an average 57% increase in stem height and 137% increase in stem density inS. alterniflora. Differences in growth were inconsistent but in most cases no significant differences were observed between healthy and dieback areas. Soil characteristics measured over the course of the experiment were generally comparable between healthy and dieback areas (redox potential averaged 69±123 [SD] across all observations at all sites, pH averaged 6.7 ± 0.3 and salinity averaged 24.9±4.4), but porewater ammonium (NH4) concentration was often higher in dieback areas (overall mean NH4 concentration, was 138±127 μM in dieback areas versus 33±40 μM in healthy areas). These results suggest that the cause of dieback was no, longer present at the time of this study and that transplants are a possibility for restoring affected areas.


Estuaries | 2004

Analysis of Tidal Marsh Vegetation Patterns in Two Georgia Estuaries Using Aerial Photography and GIS

Carrie B. Higinbotham; Merryl Alber; Alice G. Chalmers

Aerial photographs and GIS analysis were used to map the distribution of tidal marsh vegetation along the salinity gradients of the estuaries of the Altamaha and Satilla Rivers in coastal Georgia. Vegetation maps were constructed from 1993 U.S. Geological Survey Digital Orthophoto Quarter Quads, 1∶77,000-scale color infrared photographs taken in 1974 and 1∶24,000-scale black and white photographs taken in 1953, Changes between years were identified using a GIS overlay analysis. Four vegetation classifications were identified and groundtruthed with field surveys: salt marsh (areas containing primarilySpartina alterniflora), brackish marsh (Spartina cynosuroides andS. alterniflora), Juncus (Juncus roemerianus), and fresh marsh (Zizania aquatica, Zizaniopsis miliacae, and others). There was no evidence for an upstream shift in marsh vegetation along the longitudinal axis of either estuary over the time frame of this analysis, which implies there has not been a long-term increase in salinity. Although the inland extent of each marsh zone was further upstream in the Satilla than the Altamaha, they corresponded to similar average high tide salinities in each estuary: areas classified as salt marsh occurred from the mouth up to where average high tide salinity in the water was approximately 15 psu;Juncus ranged from 21 to 1 psu; brackish marsh ranged from 15 to 1 psu; and fresh marsh was upstream of 1 psu. Approximately 63% of the 6,786 ha of tidal marsh vegetation mapped in the Altamaha and 75% of the 10,220 ha mapped in the Satilla remained the same in all 3 yr.Juncus was the dominant classification in the intermediate regions of both estuaries, and shifts between areas classified asJuncus and either brackish or salt marsh constituted the primary vegetation change between 1953 and 1993 (87% of the changes observed in the Altamaha and 95% of those in the Satilla). This analysis suggests that the broad distribution of tidal marsh vegetation along these two estuaries is driven by salinity, but that at the local scale these are dynamic systems with a larger number of factors affecting the frequently changing borders of vegetation patches.


Journal of Experimental Marine Biology and Ecology | 1996

Utilization of microbial organic aggregates by bay scallops, Argopecten irradians (Lamarck)

Merryl Alber; Ivan Valiela

Abstract The use of organic aggregates as a food source by bay scallops, Argopecten irradians (Lamarck), was quantified and compared with the use of phytoplankton, a known good food. In two experiments, the first designed to characterize nitrogen incorporation and the second nitrogen release, 15 N was used to trace N into and out of scallops under defined, laboratory conditions. Scallops were fed experimental diets of labelled organic aggregates, produced from the dissolved material released by either a brown ( Fucus vesiculosis ) or red ( Gracilaria tikvahiae ) alga, or phytoplankton, Thalassiosira weissflogii (Grunow), for periods of 5–15 h in a flow-through system. More N was incorporated by scallops fed phytoplankton (523 μg · gDW −1 · h −1 ) than by those fed aggregates (70 μg · gDW −1 · h −1 for aggregates derived from F. vesiculosis and 306 μg · gDW −1 · h −1 for those derived from G. tikvahiae ). On both diets, fecal material and 15 N was released rapidly during the first 6 h of depuration. It was estimated that scallops incorporated aggregate N with an absorption efficiency of 77 to 79% as compared with an efficiency of 90% for phytoplankton N. Estimated assimilation efficiency ranged from 14 to 43% for scallops fed aggregates, and 75% for those fed phytoplankton. Despite these differences, aggregates represent a potentially important source of nutrition for suspension-feeding bivalves living in near-shore regions rich in natural seston.

Collaboration


Dive into the Merryl Alber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clark R. Alexander

Skidaway Institute of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge