Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Merten Kobalz is active.

Publication


Featured researches published by Merten Kobalz.


Inorganic Chemistry | 2012

An isomorphous series of cubic, copper-based triazolyl isophthalate MOFs: linker substitution and adsorption properties.

Jörg Lincke; Daniel Lässig; Merten Kobalz; Jens Bergmann; Marcel Handke; Jens Möllmer; Marcus Lange; Christian Roth; Andreas Möller; Reiner Staudt; Harald Krautscheid

An isomorphous series of 10 microporous copper-based metal-organic frameworks (MOFs) with the general formulas (∞)(3)[{Cu(3)(μ(3)-OH)(X)}(4){Cu(2)(H(2)O)(2)}(3)(H-R-trz-ia)(12)] (R = H, CH(3), Ph; X(2-) = SO(4)(2-), SeO(4)(2-), 2 NO(3)(2-) (1-8)) and (∞)(3)[{Cu(3)(μ(3)-OH)(X)}(8){Cu(2)(H(2)O)(2)}(6)(H-3py-trz-ia)(24)Cu(6)]X(3) (R = 3py; X(2-) = SO(4)(2-), SeO(4)(2-) (9, 10)) is presented together with the closely related compounds (∞)(3)[Cu(6)(μ(4)-O)(μ(3)-OH)(2)(H-Metrz-ia)(4)][Cu(H(2)O)(6)](NO(3))(2)·10H(2)O (11) and (∞)(3)[Cu(2)(H-3py-trz-ia)(2)(H(2)O)(3)] (12(Cu)), which are obtained under similar reaction conditions. The porosity of the series of cubic MOFs with twf-d topology reaches up to 66%. While the diameters of the spherical pores remain unaffected, adsorption measurements show that the pore volume can be fine-tuned by the substituents of the triazolyl isophthalate ligand and choice of the respective copper salt, that is, copper sulfate, selenate, or nitrate.


Inorganic Chemistry | 2015

Synthesis and Structural Elucidation of Triazolylmolybdenum(VI) Oxide Hybrids and Their Behavior as Oxidation Catalysts.

Andrey B. Lysenko; Ganna A. Senchyk; Konstantin V. Domasevitch; Jürg Hauser; Daniel Fuhrmann; Merten Kobalz; Harald Krautscheid; Patrícia Neves; Anabela A. Valente; Isabel S. Gonçalves

A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N-N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235-350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic-basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.


Journal of Materials Chemistry | 2014

Structural flexibility of a copper-based metal–organic framework: sorption of C4-hydrocarbons and in situ XRD

Marcus Lange; Merten Kobalz; Jens Bergmann; Daniel Lässig; Jörg Lincke; Jens Möllmer; Andreas Möller; Jörg Hofmann; Harald Krautscheid; Reiner Staudt; Roger Gläser

Pure component sorption isotherms of n-butane, isobutane, 1-butene and isobutene on the metal–organic framework (MOF) 3∞[Cu4(μ4-O)(μ2-OH)2(Me2trz-pba)4] at various temperatures between 283 K and 343 K and pressures up to 300 kPa are presented. The isotherms show a stepwise pore filling which is typical for structurally flexible materials with broad adsorption–desorption hysteresis loops. Gate opening pressures in their endemic characteristic depend on the used hydrocarbon gases. From all investigated gases only the isotherms of 1-butene present a second step at a relative pressure above p/p0 = 0.55. As a consequence, only 1-butene can fully open the framework resulting in a pore volume of 0.54 cm3 g−1. This result is in good agreement with the value of 0.59 cm3 g−1 calculated based on single crystal structure data. The isosteric heat of adsorption was calculated from the experimental isotherms for all C4-isomers. At low loadings the isosteric heat is in a narrow region between 41 and 49 kJ mol−1. Moreover, in situ XRD measurements at different relative hydrocarbon pressures were performed at 298 K for the C4-isomers. The differences in the pressure-depending powder diffraction patterns indicate phase transitions as a result of adsorption. Similar diffraction patterns were observed for all C4-hydrocarbons, except 1-butene, where the second step at higher relative pressure (p/p0 > 0.55) is accompanied by an additional phase transition. This powder pattern resembles that of the as-synthesized MOF material containing solvent molecules in the pore system. The resulting structural changes of the material during guest and pressure induced external stimuli are evidenced by the new coupled XRD adsorption equipment.


Inorganic Chemistry | 2013

Synthesis, Crystal Structure, and Solid-State NMR Investigations of Heteronuclear Zn/Co Coordination Networks - A Comparative Study

Av Kuttatheyil; D Laessig; Jörg Lincke; Merten Kobalz; M Baias; K Koenig; J Hofmann; Harald Krautscheid; Cj Pickard; Jürgen Haase; Marko Bertmer

Synthesis and solid-state NMR characterization of two isomorphous series of zinc and cobalt coordination networks with 1,2,4-triazolyl benzoate ligands are reported. Both series consist of 3D diamondoid networks with four-fold interpenetration. Solid-state NMR identifies the metal coordination of the ligands, and assignment of all (1)H and (13)C shifts was enabled by the combination of (13)C editing, FSLG-HETCOR spectra, and 2D (1)H-(1)H back-to-back (BABA) spectra with results from NMR-CASTEP calculations. The incorporation of Co(2+) replacing Zn(2+) ions in the MOF over the full range of concentrations has significant influences on the NMR spectra. A uniform distribution of metal ions is documented based on the analysis of (1)H T1 relaxation time measurements.


Inorganic Chemistry | 2016

Paddle Wheel Based Triazolyl Isophthalate MOFs: Impact of Linker Modification on Crystal Structure and Gas Sorption Properties

Merten Kobalz; Jörg Lincke; Karolin Kobalz; Oliver Erhart; Jens Bergmann; Daniel Lässig; Marcus Lange; Jens Möllmer; Roger Gläser; Reiner Staudt; Harald Krautscheid

Syntheses and comprehensive characterization of two closely related series of isomorphous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula ∞(3)[M2(R(1)-R(2)-trz-ia)2] (M = Cu, Zn) are presented. Using solvothermal synthesis and synthesis of microcrystalline materials on the gram scale by refluxing a solution of the starting materials, 11 MOFs are readily available for a systematic investigation of structure-property relationships. The networks of the two series are assigned to rutile (rtl) (1-4) and α-PbO2 (apo) (5-9) topology, respectively. Due to the orientation of the triazole substituents toward the cavities, both the pore volume and the pore diameter can be adjusted by choice of the alkyl substituents. Compounds 1-9 exhibit pronounced microporosity with calculated porosities of 31-53% and show thermal stability up to 390 °C as confirmed by simultaneous thermal analysis. Systematic investigation of adsorption properties by CO2 (298 K) and N2 (77 K) adsorption studies reveal remarkable network flexibility induced by alkyl substituents on the linker. Fine-tuning of the gate opening pressure and of the hysteresis shape is possible by adjusting the substitution pattern and by choice of the metal ion.


Materials | 2017

A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity †

Ulrike Junghans; Merten Kobalz; Oliver Erhart; Hannes Preißler; Jörg Lincke; Jens Möllmer; Harald Krautscheid; Roger Gläser

The synthesis and characterization of an isomorphous series of copper-containing microporous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula ∞3[Cu4(μ3-OH)2(R1-R2-trz-ia)3(H2O)x] are presented. Through size adjustment of the alkyl substituents R1 and/or R2 at the linker, the impact of linker functionalization on structure-property relationships was studied. Due to the arrangement of the substituents towards the cavities, the porosity (pore fraction 28%–39%), as well as the pore size can be adjusted by the size of the substituents of the triazole ring. Thermal analysis and temperature-dependent PXRD studies reveal a thermal stability of the MOFs up to 230 °C due to increasing framework stability through fine-tuning of the linker substitution pattern. Adsorption of CO2 (298 K) shows a decreasing maximum loading with increasing steric demand of the substituents of the triazole ring. Furthermore, the selective oxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) is studied over the MOFs at 323 K in liquid chloroform. The catalytic activity increases with the steric demand of the substituents. Additionally, these isomorphous MOFs exhibit considerable robustness under oxidizing conditions confirmed by CO2 adsorption studies, as well as by the catalytic selective oxidation experiments.


Inorganic Chemistry | 2017

Triazolyl, Imidazolyl, and Carboxylic Acid Moieties in the Design of Molybdenum Trioxide Hybrids: Photophysical and Catalytic Behavior

Andrey B. Lysenko; Ganna A. Senchyk; Konstantin V. Domasevitch; Merten Kobalz; Harald Krautscheid; Jakub Cichos; M. Karbowiak; Patrícia Neves; Anabela A. Valente; Isabel S. Gonçalves

Three organic ligands bearing 1,2,4-triazolyl donor moieties, (S)-4-(1-phenylpropyl)-1,2,4-triazole (trethbz), 4-(1,2,4-triazol-4-yl)benzoic acid (trPhCO2H), and 3-(1H-imidazol-4-yl)-2-(1,2,4-triazol-4-yl)propionic acid (trhis), were prepared to evaluate their coordination behavior in the development of molybdenum(VI) oxide organic hybrids. Four compounds, [Mo2O6(trethbz)2]·H2O (1), [Mo4O12(trPhCO2H)2]·0.5H2O (2a), [Mo4O12(trPhCO2H)2]·H2O (2b), and [Mo8O25(trhis)2(trhisH)2]·2H2O (3), were synthesized and characterized. The monofunctional tr-ligand resulted in the formation of a zigzag chain [Mo2O6(trethbz)2] built up from cis-{MoO4N2} octahedra united through common μ2-O vertices. Employing the heterodonor ligand with tr/-CO2H functions afforded either layer or ribbon structures of corner- or edge-sharing {MoO5N} polyhedra (2a or 2b) stapled by tr-links in axial positions, whereas -CO2H groups remained uncoordinated. The presence of the im-heterocycle as an extra function in trhis facilitated formation of zwitterionic molecules with a protonated imidazolium group (imH+) and a negatively charged -CO2- group, whereas the tr-fragment was left neutral. Under the acidic hydrothermal conditions used, the organic ligand binds to molybdenum atoms either through [N-N]-tr or through both [N-N]-tr and μ2-CO2- units, which occur in protonated bidentate or zwitterionic tetradentate forms (trhisH+ and trhis, respectively). This leads to a new zigzag subtopological motif (3) of negatively charged polyoxomolybdate {Mo8O25}n2n- consisting of corner- and edge-sharing cis-{MoO4N2} and {MoO6} octahedra, while the tetradentate zwitterrionic trhis species connect these chains into a 2D net. Electronic spectra of the compounds showed optical gaps consistent with semiconducting behavior. The compounds were investigated as epoxidation catalysts via the model reactions of achiral and prochiral olefins (cis-cyclooctene and trans-β-methylstyrene) with tert-butylhydroperoxide. The best-performing catalyst (1) was explored for the epoxidation of other olefins, including biomass-derived methyl oleate, methyl linoleate, and prochiral dl-limonene.


Inorganic Chemistry | 2016

Bis(carboxyphenyl)-1,2,4-triazole Based Metal–Organic Frameworks: Impact of Metal Ion Substitution on Adsorption Performance

K. Kobalz; Merten Kobalz; Jens Möllmer; Ulrike Junghans; Marcus Lange; Jens Bergmann; S. Dietrich; Mike Wecks; Roger Gläser; Harald Krautscheid

This work presents the syntheses and comprehensive characterization of six paddlewheel based metal–organic frameworks (MOFs) with the general formula ∞3[M2L2] (M = Cu, Co, Zn; L = bis(carboxyphenyl)-1,2,4-triazole) forming an isoreticular series with rutile (rtl) topology. These microporous materials are suitable for a systematic investigation of structure–property relationships based on the impact of the metal ion. Depending on the metal ion, the calculated porosities and the pore diameters reach from 58% to 61% and 300 to 750 pm, respectively. Simultaneous thermal analysis and temperature dependent PXRD studies reveal varying thermal behavior with stabilities up to 400 °C. In the case of syntheses with various Co2+/Cu2+, Co2+/Zn2+, and Cu2+/Zn2+ ratios, ICP-OES analyses and SEM-EDX studies confirm the formation of mixed metal MOFs and the metal ion distribution in the bulk samples as well as within the crystals. For the systematic investigation of CO2 (298 K) and N2 (77 K) adsorption properties, all mat...


Journal of Physical Chemistry C | 2015

Synthesis, Structure, and Electron Paramagnetic Resonance Study of a Mixed Valent Metal–Organic Framework Containing Cu2 Paddle-Wheel Units

Mantas Šimėnas; Merten Kobalz; Matthias Mendt; Pierre Eckold; Harald Krautscheid; Ju̅ras Banys; Andreas Pöppl


Microporous and Mesoporous Materials | 2016

Adsorptive separation of C2/C3/C4-hydrocarbons on a flexible Cu-MOF: The influence of temperature, chain length and bonding character

Thomas Hähnel; Grit Kalies; Rajamani Krishna; Jens Möllmer; Jörg Hofmann; Merten Kobalz; Harald Krautscheid

Collaboration


Dive into the Merten Kobalz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge