Mesfin Tesfaye
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mesfin Tesfaye.
Plant Physiology | 2001
Mesfin Tesfaye; Stephen J. Temple; Deborah L. Allan; Carroll P. Vance; Deborah A. Samac
Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity.
Plant Physiology | 2007
Georgina Hernández; Mario Ramírez; Oswaldo Valdés-López; Mesfin Tesfaye; Michelle A. Graham; Tomasz Czechowski; Armin Schlereth; Maren Wandrey; Alexander Erban; Foo Cheung; Hank Wu; Miguel Lara; Christopher D. Town; Joachim Kopka; Michael K. Udvardi; Carroll P. Vance
Phosphorus (P) is an essential element for plant growth. Crop production of common bean (Phaseolus vulgaris), the most important legume for human consumption, is often limited by low P in the soil. Functional genomics were used to investigate global gene expression and metabolic responses of bean plants grown under P-deficient and P-sufficient conditions. P-deficient plants showed enhanced root to shoot ratio accompanied by reduced leaf area and net photosynthesis rates. Transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs of 2,212 unigenes from a P deficiency root cDNA library. A total of 126 genes, representing different functional categories, showed significant differential expression in response to P: 62% of these were induced in P-deficient roots. A set of 372 bean transcription factor (TF) genes, coding for proteins with Inter-Pro domains characteristic or diagnostic for TF, were identified from The Institute of Genomic Research/Dana Farber Cancer Institute Common Bean Gene Index. Using real-time reverse transcription-polymerase chain reaction analysis, 17 TF genes were differentially expressed in P-deficient roots; four TF genes, including MYB TFs, were induced. Nonbiased metabolite profiling was used to assess the degree to which changes in gene expression in P-deficient roots affect overall metabolism. Stress-related metabolites such as polyols accumulated in P-deficient roots as well as sugars, which are known to be essential for P stress gene induction. Candidate genes have been identified that may contribute to root adaptation to P deficiency and be useful for improvement of common bean.
Science | 2014
Liliana M. Costa; Eleanor Marshall; Mesfin Tesfaye; Kevin A. T. Silverstein; Masashi Mori; Yoshitaka Umetsu; Sophie L. Otterbach; Ranjith Papareddy; Hugh G. Dickinson; Kim Boutiller; Kathryn A. VandenBosch; Shin-ya Ohki; José F. Gutierrez-Marcos
Tripeptide Maternal Support In flowering plants, fertilization involves multiple gametes. The diploid zygote, which will form the embryonic plant, is surrounded by the often triploid endosperm, which provides a supportive and nourishing function. Working in Arabidopsis, Costa et al. (p. 168; see the Perspective by Bayer) identified a trio of small signaling peptides that derive from the endosperm but that regulate growth of the embryo. RNA interference was used to down-regulate expression of all three peptides. Fertilization was not affected, but seed growth was. The peptides were critical for normal development of the suspensor, which tethers and nourishes the growing embryo. Within plant seeds, signaling functions from the endosperm regulate development of the embryonic plant suspensor. [Also see Perspective by Bayer] Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non–cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.
Transgenic Research | 2004
Deborah A. Samac; Mesfin Tesfaye; Melinda R. Dornbusch; Purev Saruul; Stephen J. Temple
The activity of constitutive promoters was compared in transgenic alfalfa plants using two marker genes. Three promoters, the 35S promoter from cauliflower mosaic virus (CaMV), the cassava vein mosaic virus (CsVMV) promoter, and the sugarcane bacilliform badnavirus (ScBV) promoter were each fused to the β-glucuronidase (gusA) gene. The highest GUS enzyme activity was obtained using the CsVMV promoter and all alfalfa cells assayed by in situ staining had high levels of enzyme activity. The 35S promoter was expressed in leaves, roots, and stems at moderate levels, but the promoter was not active in stem pith cells, root cortical cells, or in the symbiotic zones of nodules. The ScBV promoter was active primarily in vascular tissues throughout the plant. In leaves, GUS activity driven by the CsVMV promoter was approximately 24-fold greater than the activity from the 35S promoter and 38-fold greater than the activity from the ScBV promoter. Five promoters, the double 35S promoter, figwort mosaic virus (FMV) promoter, CsVMV promoter, ScBV promoter, and alfalfa small subunit Rubisco (RbcS) promoter were used to control expression of a cDNA from Trichoderma atroviride encoding an endochitinase (ech42). Highest chitinase activity in leaves, roots, and root nodules was obtained in plants containing the CsVMV:ech42 transgene. Plants expressing the endochitinase were challenged with Phoma medicaginisvar. medicaginis, the causal agent of spring black stem and leaf spot of alfalfa. Although endochitinase activity in leaves of transgenic plants was 50- to 2650-fold greater than activity in control plants, none of the transgenic plants showed a consistent increase in disease resistance compared to controls. The high constitutive levels of both GUS and endochitinase activity obtained demonstrate that the CsVMV promoter is useful for high-level transgene expression in alfalfa.
Plant and Soil | 2002
Joachim Schulze; Mesfin Tesfaye; R. H. M. G. Litjens; Bruna Bucciarelli; Gian Trepp; Susan S. Miller; Deborah A. Samac; Deborah L. Allan; Carroll P. Vance
Malate occupies a central role in plant metabolism. Its importance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. In nitrogen-fixing root nodules, malate is the primary substrate for bacteroid respiration, thus fueling nitrogenase. Malate also provides the carbon skeletons for assimilation of fixed nitrogen into amino acids. During phosphorus deficiency, malate is frequently secreted from roots to release unavailable forms of phosphorus. Malate is also involved with plant adaptation to aluminum toxicity. To define the genetic and biochemical regulation of malate formation in plant nutrition we have isolated and characterized genes involved in malate metabolism from nitrogen-fixing root nodules of alfalfa and those involved in organic acid excretion from phosphorus-deficient proteoid roots of white lupin. Moreover, we have overexpressed malate dehydrogenase in alfalfa in attempts to improve nutrient acquisition. This report is an overview of our efforts to understand and modify malate metabolism, particularly in the legumes alfalfa and white lupin.
Plant Physiology | 2007
Mesfin Tesfaye; Junqi Liu; Deborah L. Allan; Carroll P. Vance
Phosphorus (P), an essential element for growth and development, is taken up by plants as phosphate (Pi), but Pi is unevenly distributed and relatively immobile in soils. As a result, more than 30% of the worlds arable land requires the application of P fertilizers for cropping ([Vance et al., 2003
Functional Plant Biology | 2006
Michelle A. Graham; Mario Ramírez; Oswaldo Valdés-López; Miguel Lara; Mesfin Tesfaye; Carroll P. Vance; Georgina Hernandez
Common bean (Phaseolus vulgaris L.) is the worlds most important grain legume for direct human consumption. However, the soils in which common bean predominate are frequently limited by the availability of phosphorus (P). Improving bean yield and quality requires an understanding of the genes controlling P acquisition and use, ultimately utilising these genes for crop improvement. Here we report an in silico approach for the identification of genes involved in adaptation of P. vulgaris and other legumes to P-deficiency. Some 22 groups of genes from four legume species and Arabidopsis thaliana, encoding diverse functions, were identified as statistically over-represented in EST contigs from P-stressed tissues. By combining bioinformatics analysis with available micro / macroarray technologies and clustering results across five species, we identified 52 P. vulgaris candidate genes belonging to 19 categories as induced by P-stress response. Transport-related, stress (defence and regulation) signal transduction genes are abundantly represented. Manipulating these genes through traditional breeding methodologies and / or biotechnology approaches may allow us to improve crop P-nutrition.
Soil Biology & Biochemistry | 2003
Mesfin Tesfaye; Nicholas S. Dufault; Melinda R. Dornbusch; Deborah L. Allan; Carroll P. Vance; Deborah A. Samac
Transgenic alfalfa over-expressing a nodule-enhanced malate dehydrogenase (neMDH) cDNA and untransformed alfalfa plants were grown at the same field site and rhizosphere soils collected after 53 weeks of plant growth. These alfalfa lines differ in the amount and composition of root organic acids produced and exuded into the rhizosphere. Nucleotide sequencing of PCR-based 16S ribosomal DNA (rDNA) clone libraries and Biologe GN microtiter plates were employed to assess the activity of naturally occurring rhizobacteria in the two alfalfa rhizospheres. Selected macro- and micro-elements in the two alfalfa rhizosphere soils were also measured. Analysis of 240 16S rDNA clone sequences indicated the existence of about 11 bacterial phyla and their major subdivisions in the two alfalfa rhizosphere samples. There were qualitative changes in the abundance of bacterial phylogenetic groups between rhizosphere soils of transgenic and untransformed alfalfa. Carbon substrate utilization profiles suggested that rhizosphere samples from transgenic alfalfa had significantly greater microbial functional diversity compared with rhizosphere samples from untransformed alfalfa. The concentrations of nitric acid extractable P, K, Mn, Zn and Cu increased significantly in the transgenic alfalfa rhizosphere compared with the untransformed alfalfa rhizosphere. These observations indicate that organic acids produced by plant roots significantly influence rhizosphere microbial diversity and availability of macro- and micro-nutrients and demonstrate the utility of such trangenic plants as tools for studying the potential impact of plant root exudates on soil microbial ecosystems. q 2003 Elsevier Science Ltd. All rights reserved.
PLOS ONE | 2013
Mesfin Tesfaye; Kevin A. T. Silverstein; Sumitha Nallu; Lin Wang; Christopher J. Botanga; S. Karen Gomez; Liliana M. Costa; Maria J. Harrison; Deborah A. Samac; Jane Glazebrook; Fumiaki Katagiri; José F. Gutierrez-Marcos; Kathryn A. VandenBosch
Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.
Molecular Plant-microbe Interactions | 2006
Mesfin Tesfaye; Deborah A. Samac; Carroll P. Vance
In silico analysis of the Medicago truncatula gene index release 8.0 at The Institute for Genomic Research identified approximately 530 tentative consensus sequences (TC) clustered from 2,700 expressed sequence tags (EST) derived solely from Sinorhizobium meliloti-inoculated root and nodule tissues. A great majority (76%) of these TC were derived exclusively from nitrogen-fixing and senescent nodules. A cDNA filter array was constructed using approximately 58% of the in silico-identified TC as well as cDNAs representing selected carbon and nitrogen metabolic pathways. The purpose of the array was to analyze transcript abundance in M. truncatula roots and nodules following inoculation by a wild-type S. meliloti strain, a mutant strain that forms ineffective nodules, an uninoculated root control, and roots following nitrate or ammonium treatments. In all, 81 cDNAs were upregulated in both effective and ineffective nodules, and 78% of these cDNAs represent in silico-identified TC. One group of in silico-identified TC encodes genes with similarity to putative plant disease resistance (R) genes of the nucleotide binding site-leucine-rich repeat type. Expression of R genes was enhanced in effective nodules, and transcripts also were detected in ineffective nodules at 14 days postinoculation (dpi). Homologous R gene sequences also have been identified in the Medicago genome. However, their functional importance in nodules remains to be established. Genes for enzymes involved in organic acid synthesis along with genes involved in nitrogen metabolism were shown to be coexpressed in nitrate-fed roots and effective nodules of M. truncatula.