Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mette Burmølle is active.

Publication


Featured researches published by Mette Burmølle.


Applied and Environmental Microbiology | 2006

Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

Mette Burmølle; Jeremy S. Webb; Dhana Rao; Lars Hestbjerg Hansen; Søren J. Sørensen; Staffan Kjelleberg

ABSTRACT Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.


Fems Immunology and Medical Microbiology | 2010

Biofilms in chronic infections – a matter of opportunity – monospecies biofilms in multispecies infections

Mette Burmølle; Trine Rolighed Thomsen; Mustafa Fazli; Irene Dige; Lise Christensen; Preben Homøe; Michael Tvede; Bente Nyvad; Tim Tolker-Nielsen; Michael Givskov; Klaus Kirketerp-Møller; Helle Krogh Johansen; Niels Høiby; Peter Østrup Jensen; Søren J. Sørensen; Thomas Bjarnsholt

It has become evident that aggregation or biofilm formation is an important survival mechanism for bacteria in almost any environment. In this review, we summarize recent visualizations of bacterial aggregates in several chronic infections (chronic otitis media, cystic fibrosis, infection due to permanent tissue fillers and chronic wounds) both as to distribution (such as where in the wound bed) and organization (monospecies or multispecies microcolonies). We correlate these biofilm observations to observations of commensal biofilms (dental and intestine) and biofilms in natural ecosystems (soil). The observations of the chronic biofilm infections point toward a trend of low bacterial diversity and sovereign monospecies biofilm aggregates even though the infection in which they reside are multispecies. In contrast to this, commensal and natural biofilm aggregates contain multiple species that are believed to coexist, interact and form biofilms with high bacterial and niche diversity. We discuss these differences from both the diagnostic and the scientific point of view.


Trends in Microbiology | 2014

Interactions in multispecies biofilms: do they actually matter?

Mette Burmølle; Dawei Ren; Thomas Bjarnsholt; Søren J. Sørensen

The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these synergistic effects are to some extent characterized at the molecular and evolutionary levels, and further exploration is now possible due to the enhanced resolution and higher throughput of available techniques.


Antimicrobial Agents and Chemotherapy | 2004

Plasmid-Encoded Multidrug Efflux Pump Conferring Resistance to Olaquindox in Escherichia coli

Lars Hestbjerg Hansen; Elsebetta Johannesen; Mette Burmølle; Anders Morten Hay Sørensen; Søren J. Sørensen

ABSTRACT We report here the first gene-encoded resistance mechanism to the swine growth enhancer olaquindox. The genetic elements involved in resistance to olaquindox were subcloned and sequenced from a conjugative plasmid isolated from Escherichia coli. The subcloned fragment contained two open reading frames, oqxA and oqxB, that are homologous to several resistance-nodulation-cell-division family efflux systems from different species. The putative protein sequences were aligned to both experimentally verified and putative efflux pumps. We show that oqxA and oqxB are expressed in E. coli. Plasmids containing the oqxAB genes yielded high (>128 μg/ml) resistance to olaquindox in E. coli, whereas strains containing the control plasmid showed low resistance to the drug (8 μg/ml). The oqxAB-encoded pump also conferred high (>64 μg/ml) resistance to chloramphenicol. We demonstrate that the subcloned fragment conferred H+-dependent ethidium efflux abilities to E. coli strain N43. In addition, we show that the efflux system is dependent on the host TolC outer membrane protein when expressed in E. coli.


Microbiology | 2008

Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains.

Mette Burmølle; Martin Iain Bahl; Lars Bogø Jensen; Søren J. Sørensen; Lars Hestbjerg Hansen

The conjugative plasmid pOLA52, which confers resistance to olaquindox and other antimicrobial agents through a multidrug efflux pump, was investigated for its ability to promote biofilm formation in Escherichia coli. Screening of a transposon-mutagenized pOLA52 clone library revealed several biofilm-deficient mutants, which all mapped within a putative operon with high homology to the mrkABCDF operon of Klebsiella pneumoniae, where these genes are responsible for type 3 fimbriae expression, attachment to surfaces and biofilm formation. Biofilm formation in microtitre plates and in urinary catheters of clones containing pOLA52 with a disrupted putative mrk operon was reduced by more than 100-fold and 2-fold, respectively, compared to mutants with an intact mrk operon. The conjugative transfer rate of pOLA52 was also significantly lower when the mrk operon was disrupted. Through reverse transcriptase analysis, it was demonstrated that the genes contained in the putative mrk operon were linked and likely to be expressed as a single operon. Immunoblotting with type 3 fimbriae (MrkA)-specific antibodies further verified expression of type 3 fimbriae. When transferred to other, potentially pathogenic, members of the family Enterobacteriaceae, including Klebsiella pneumoniae, Salmonella Typhimurium, Kluyvera sp. and Enterobacter aerogenes, pOLA52 facilitated increased biofilm formation. pOLA52 is believed to represent the first example of a conjugative plasmid encoding type 3 fimbriae, resulting in enhanced conjugation frequencies and biofilm formation of the plasmid-harbouring strain.


The ISME Journal | 2015

High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation

Dawei Ren; Jonas Stenløkke Madsen; Søren J. Sørensen; Mette Burmølle

Biofilms that form on roots, litter and soil particles typically contain multiple bacterial species. Currently, little is known about multispecies biofilm interactions and few studies have been based on environmental isolates. Here, the prevalence of synergistic effects in biofilm formation among seven different soil isolates, cocultured in combinations of four species, was investigated. We observed greater biofilm biomass production in 63% of the four-species culture combinations tested than in biofilm formed by single-species cultures, demonstrating a high prevalence of synergism in multispecies biofilm formation. One four-species consortium, composed of Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus, exhibited strong synergy in biofilm formation and was selected for further study. Of the four strains, X. retroflexus was the only one capable of forming abundant biofilm in isolation, under the in vitro conditions investigated. In accordance, strain-specific quantitative PCR revealed that X. retroflexus was predominant within the four-species consortium (>97% of total biofilm cell number). Despite low relative abundance of all the remaining strains, all were indispensable for the strong synergistic effect to occur within the four-species biofilm. Moreover, absolute individual strain cell numbers were significantly enhanced when compared with those of single-species biofilms, indicating that all the individual strains benefit from inclusion in the multispecies community. Our results show a high prevalence of synergy in biofilm formation in multispecies consortia isolated from a natural bacterial habitat and suggest that interspecific cooperation occurs.


Microbial Ecology | 2003

Presence of N-Acyl Homoserine Lactones in Soil Detected by a Whole-Cell Biosensor and Flow Cytometry

Mette Burmølle; Lars Hestbjerg Hansen; Gunnar Oregaard; Søren J. Sørensen

Quorum sensing enables bacteria to regulate expression of certain genes according to population density. N-acyl homoserine lactone (AHL)-based quorum sensing is known to be widespread among gram-negative bacteria. Several bacterial whole-cell biosensors for AHL detection have been developed and some were used in in situ studies of AHL production. From these studies our knowledge of the significance of quorum sensing in various environments has been improved. However, very little is known about production of AHLs in soil environments. In the present study, an approach for detecting AHL production in bulk soil was developed. A whole-cell biosensor based on the regulatory region of the lux-operon from Vibrio fischeri fused to gfp was constructed, resulting in a luxR-PluxI-gfpmut3*-fusion in the high copy plasmid, pAHL-GFP. Escherichia coli MC4100 harboring pAHL-GFP responded to the AHL-compound N-octanoyl homoserine lactone (OHL) by expressing green fluorescence. In situ application of E. coli MC4100/pAHL-GFP was tested by adding OHL in different concentrations to sterile soil microcosms. E. coli MC4100/pAHL-GFP were incubated in the soil microcosms and extracted by an improved Nycodenz-extraction method optimized for flow cytometry. The presence of induced cells was then verified by single-cell analysis by flow cytometry. OHL concentrations between 0.5 and 50 nmol per g soil were detected. When introducing the AHL-producing Serratia liquefaciens to soil microcosms, expression of green fluorescent protein was induced in E. coli MC4100/pAHL-GFP. Thereby, the ability of this strain to detect excretion of AHLs by S. liquefaciens in sterile soil was shown. The use of an improved extraction method and a whole-cell biosensor combined with flow cytometry analysis proved to be promising tools in future studies of AHL production by microbial populations in soil environments.


Plasmid | 2009

All IncP-1 plasmid subgroups, including the novel ε subgroup, are prevalent in the influent of a Danish wastewater treatment plant

Martin Iain Bahl; Mette Burmølle; Annelein Meisner; Lars Hestbjerg Hansen; Søren J. Sørensen

The presence and diversity of IncP-1 plasmids in the influent of a Danish wastewater treatment plant was studied by PCR amplification of the trfA gene in community DNA followed by sequencing. Three sets of PCR primers were designed to amplify a 281bp fragment of trfA from all currently sequenced IncP-1 plasmids. A neighbor-joining tree, based on a multiple alignment of 72 obtained sequences together with homologous sequences of previously published IncP-1 plasmids, revealed that all established subgroups of IncP-1 plasmids, alpha, beta, gamma and delta, were present in the wastewater treatment plant influent. Also sequences representing the recently described fifth subgroup, the epsilon subgroup, were detected in the wastewater. Thus, these results confirm the presence of at least five phylogenetically distinct subgroups of IncP-1 plasmids and represent the first time that sequences associated with plasmids of all of these five subgroups have been detected in a single setting. Additionally, the results confirm that wastewater constitutes a reservoir for the conjugative IncP-1 plasmids, which often harbor multiple antibiotic resistance genes.


PLOS ONE | 2013

Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes

Tim Holm Jakobsen; Martin Hansen; Peter Østrup Jensen; Lars Kai Hansen; Leise Riber; April Cockburn; Mette Kolpen; C.R. Hansen; Winnie Ridderberg; Steffen Eickhardt; Marlene R. Hansen; Peter Kerpedjiev; Morten Alhede; Klaus Qvortrup; Mette Burmølle; Michael Kühl; Oana Ciofu; Michael Givskov; Søren J. Sørensen; Niels Høiby; Thomas Bjarnsholt

Achromobacter xylosoxidans is an environmental opportunistic pathogen, which infects an increasing number of immunocompromised patients. In this study we combined genomic analysis of a clinical isolated A. xylosoxidans strain with phenotypic investigations of its important pathogenic features. We present a complete assembly of the genome of A. xylosoxidans NH44784-1996, an isolate from a cystic fibrosis patient obtained in 1996. The genome of A. xylosoxidans NH44784-1996 contains approximately 7 million base pairs with 6390 potential protein-coding sequences. We identified several features that render it an opportunistic human pathogen, We found genes involved in anaerobic growth and the pgaABCD operon encoding the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamin. Furthermore, the genome contains a range of antibiotic resistance genes coding efflux pump systems and antibiotic modifying enzymes. In vitro studies of A. xylosoxidans NH44784-1996 confirmed the genomic evidence for its ability to form biofilms, anaerobic growth via denitrification, and resistance to a broad range of antibiotics. Our investigation enables further studies of the functionality of important identified genes contributing to the pathogenicity of A. xylosoxidans and thereby improves our understanding and ability to treat this emerging pathogen.


Trends in Microbiology | 2016

Studying Bacterial Multispecies Biofilms: Where to Start?

Henriette L. Røder; Søren J. Sørensen; Mette Burmølle

The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions.

Collaboration


Dive into the Mette Burmølle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakob Russel

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Dawei Ren

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge