Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mette D. Jacobsen is active.

Publication


Featured researches published by Mette D. Jacobsen.


Eukaryotic Cell | 2007

Molecular Phylogenetics of Candida albicans

Frank C. Odds; Marie-Elisabeth Bougnoux; Duncan J. Shaw; Judith M. Bain; Amanda D. Davidson; Dorothée Diogo; Mette D. Jacobsen; Maud Lecomte; Shu-Ying Li; Arianna Tavanti; Martin C. J. Maiden; Neil A. R. Gow; Christophe d'Enfert

ABSTRACT We analyzed data on multilocus sequence typing (MLST), ABC typing, mating type-like locus (MAT) status, and antifungal susceptibility for a panel of 1,391 Candida albicans isolates. Almost all (96.7%) of the isolates could be assigned by MLST to one of 17 clades. eBURST analysis revealed 53 clonal clusters. Diploid sequence type 69 was the most common MLST strain type and the founder of the largest clonal cluster, and examples were found among isolates from all parts of the world. ABC types and geographical origins showed statistically significant variations among clades by univariate analysis of variance, but anatomical source and antifungal susceptibility data were not significantly associated. A separate analysis limited to European isolates, thereby minimizing geographical effects, showed significant differences in the proportions of isolates from blood, commensal carriage, and superficial infections among the five most populous clades. The proportion of isolates with low antifungal susceptibility was highest for MAT homozygous a/a types and then α/α types and was lowest for heterozygous a/α types. The tree of clades defined by MLST was not congruent with trees generated from the individual gene fragments sequenced, implying a separate evolutionary history for each fragment. Analysis of nucleic acid variation among loci and within loci supported recombination. Computational haplotype analysis showed a high frequency of recombination events, suggesting that isolates had mixed evolutionary histories resembling those of a sexually reproducing species.


Journal of Medical Microbiology | 2007

One year prospective survey of Candida bloodstream infections in Scotland

Frank C. Odds; Mary Hanson; Amanda D. Davidson; Mette D. Jacobsen; Pauline Wright; Julie A. Whyte; Neil A. R. Gow; Brian Jones

A 12 month survey of candidaemia in Scotland, UK, in which every Scottish hospital laboratory submitted all blood isolates of yeasts for identification, strain typing and susceptibility testing, provided 300 isolates from 242 patients, generating incidence data of 4.8 cases per 100 000 population per year and 5.9 cases per 100 000 acute occupied bed days; 27.9 % of cases occurred in intensive care units. More than half the patients with candidaemia had an underlying disease involving the abdomen, 78 % had an indwelling intravenous catheter, 62 % had suffered a bacterial infection within the 2 weeks prior to candidaemia and 37 % had undergone a laparotomy. Candida albicans was the infecting species in 50 % of cases, followed by Candida glabrata (21 %) and Candida parapsilosis (12 %). Seven cases of candidaemia were caused by Candida dubliniensis, which was more prevalent even than Candida lusitaniae and Candida tropicalis (six cases each). Among C. glabrata isolates, 55 % showed reduced susceptibility to fluconazole, but azole resistance among other species was extremely low. Multilocus sequence typing showed isolates with high similarity came from different hospitals across the country, and many different types came from the hospitals that submitted the most isolates, indicating no tendency towards hospital-specific endemic strains. Multiple isolates of C. albicans and C. glabrata from individual patients were of the same strain type with single exceptions for each species. The high prevalence of candidaemia in Scotland, relative to other population-based European studies, and the high level of reduced fluconazole susceptibility of Scottish C. glabrata isolates warrant continued future surveillance of invasive Candida infections.


Journal of Clinical Microbiology | 2007

Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus

Judith M. Bain; Arianna Tavanti; Amanda D. Davidson; Mette D. Jacobsen; Duncan J. Shaw; Neil Andrew Robert Gow; Frank C. Odds

ABSTRACT A multilocus sequence typing (MLST) scheme was devised for Aspergillus fumigatus. The system involved sequencing seven gene fragments and was applied to a panel of 100 isolates of A. fumigatus from diverse sources. Thirty different sequence types were found among the 100 isolates, and 93% of the isolates differed from the other isolates by only one allele sequence, forming a single clonal cluster as indicated by the eBURST algorithm. The discriminatory power of the MLST method was only 0.93. These results strongly indicate that A. fumigatus is a species of a relatively recent origin, with low levels of sequence dissimilarity. Typing methods based on variable numbers of tandem repeats offer higher levels of strain discrimination. Mating type data for the 100 isolates showed that 71 isolates were type MAT1-2 and 29 isolates were MAT1-1.


Journal of Clinical Microbiology | 2006

Candida albicans Strain Maintenance, Replacement, and Microvariation Demonstrated by Multilocus Sequence Typing

Frank C. Odds; Amanda D. Davidson; Mette D. Jacobsen; Arianna Tavanti; Julie A. Whyte; C. C. Kibbler; David Ellis; Martin C. J. Maiden; Duncan J. Shaw; Neil Andrew Robert Gow

ABSTRACT We typed 165 Candida albicans isolates from 44 different sources by multilocus sequence typing (MLST) and ABC typing of rRNA genes and determined their homozygosity or heterozygosity at the mating-type-like locus (MTL). The isolates represented pairs or larger sets from individual sources, which allowed the determination of strain diversity within patients. A comparison of replicate sequence data determined a reproducibility threshold for regarding isolates as MLST indistinguishable. For 36 isolate sets, MLST and ABC typing showed indistinguishable or highly related strain types among isolates from different sites or from the same site at different times from each patient. This observation included 11 sets with at least one isolate from a blood culture and a nonsterile site from the same patient. For one patient, strain replacement was evidenced in the form of two sets of isolates from different hospital admissions where the strain types within each set were nearly identical but where the two sets differed both by MLST and ABC typing. MLST therefore confirms the existing view of C. albicans strain carriage. Microvariation, evidenced as small differences between MLST types, resulted in most instances from a loss of heterozygosity at one or more of the sequenced loci. Among isolate sets that showed major strain type differences, some isolates could be excluded as likely examples of handling errors during storage. However, for a minority of isolates, intermittent differences in ABC type for tightly clustered MLST types and intermittent appearances of MTL homozygosity lead us to propose that some C. albicans isolates, or all isolates under yet-to-be-determined conditions, maintain a high level of genetic diversity by mechanisms such as recombination, gene conversion, or chromosomal ploidy change.


Antimicrobial Agents and Chemotherapy | 2012

Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance In Vivo

Keunsook K. Lee; Donna M. MacCallum; Mette D. Jacobsen; Louise A. Walker; Frank C. Odds; Neil A. R. Gow; Carol A. Munro

ABSTRACT Candida albicans cells with increased cell wall chitin have reduced echinocandin susceptibility in vitro. The aim of this study was to investigate whether C. albicans cells with elevated chitin levels have reduced echinocandin susceptibility in vivo. BALB/c mice were infected with C. albicans cells with normal chitin levels and compared to mice infected with high-chitin cells. Caspofungin therapy was initiated at 24 h postinfection. Mice infected with chitin-normal cells were successfully treated with caspofungin, as indicated by reduced kidney fungal burdens, reduced weight loss, and decreased C. albicans density in kidney lesions. In contrast, mice infected with high-chitin C. albicans cells were less susceptible to caspofungin, as they had higher kidney fungal burdens and greater weight loss during early infection. Cells recovered from mouse kidneys at 24 h postinfection with high-chitin cells had 1.6-fold higher chitin levels than cells from mice infected with chitin-normal cells and maintained a significantly reduced susceptibility to caspofungin when tested in vitro. At 48 h postinfection, caspofungin treatment induced a further increase in chitin content of C. albicans cells harvested from kidneys compared to saline treatment. Some of the recovered clones had acquired, at a low frequency, a point mutation in FKS1 resulting in a S645Y amino acid substitution, a mutation known to confer echinocandin resistance. This occurred even in cells that had not been exposed to caspofungin. Our results suggest that the efficacy of caspofungin against C. albicans was reduced in vivo due to either elevation of chitin levels in the cell wall or acquisition of FKS1 point mutations.


The Journal of Experimental Biology | 2014

Stress adaptation in a pathogenic fungus.

Alistair J. P. Brown; Susan Budge; Despoina Kaloriti; Anna Tillmann; Mette D. Jacobsen; Zhikang Yin; Iuliana V. Ene; Iryna Bohovych; Doblin Sandai; Stavroula Kastora; Joanna Potrykus; Elizabeth R. Ballou; Delma S. Childers; Shahida Shahana; Michelle D. Leach

Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of a number of regulators in C. albicans have diverged relative to the benign model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This reflects the specific evolution of C. albicans as an opportunistic pathogen obligately associated with warm-blooded animals, compared with other yeasts that are found across diverse environmental niches. Our understanding of C. albicans stress signalling is based primarily on the in vitro responses of glucose-grown cells to individual stresses. However, in vivo this pathogen occupies complex and dynamic host niches characterised by alternative carbon sources and simultaneous exposure to combinations of stresses (rather than individual stresses). It has become apparent that changes in carbon source strongly influence stress resistance, and that some combinatorial stresses exert non-additive effects upon C. albicans. These effects, which are relevant to fungus–host interactions during disease progression, are mediated by multiple mechanisms that include signalling and chemical crosstalk, stress pathway interference and a biological transistor.


Antimicrobial Agents and Chemotherapy | 2010

Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection

Donna M. MacCallum; Alix T. Coste; Françoise Ischer; Mette D. Jacobsen; Frank C. Odds; Dominique Sanglard

ABSTRACT Principal mechanisms of resistance to azole antifungals include the upregulation of multidrug transporters and the modification of the target enzyme, a cytochrome P450 (Erg11) involved in the 14α-demethylation of ergosterol. These mechanisms are often combined in azole-resistant Candida albicans isolates recovered from patients. However, the precise contributions of individual mechanisms to C. albicans resistance to specific azoles have been difficult to establish because of the technical difficulties in the genetic manipulation of this diploid species. Recent advances have made genetic manipulations easier, and we therefore undertook the genetic dissection of resistance mechanisms in an azole-resistant clinical isolate. This isolate (DSY296) upregulates the multidrug transporter genes CDR1 and CDR2 and has acquired a G464S substitution in both ERG11 alleles. In DSY296, inactivation of TAC1, a transcription factor containing a gain-of-function mutation, followed by sequential replacement of ERG11 mutant alleles with wild-type alleles, restored azole susceptibility to the levels measured for a parent azole-susceptible isolate (DSY294). These sequential genetic manipulations not only demonstrated that these two resistance mechanisms were those responsible for the development of resistance in DSY296 but also indicated that the quantitative level of resistance as measured in vitro by MIC determinations was a function of the number of genetic resistance mechanisms operating in any strain. The engineered strains were also tested for their responses to fluconazole treatment in a novel 3-day model of invasive C. albicans infection of mice. Fifty percent effective doses (ED50s) of fluconazole were highest for DSY296 and decreased proportionally with the sequential removal of each resistance mechanism. However, while the fold differences in ED50 were proportional to the fold differences in MICs, their magnitude was lower than that measured in vitro and depended on the specific resistance mechanism operating.


Eukaryotic Cell | 2008

Multilocus Sequence Typing of Pathogenic Candida Species

Frank C. Odds; Mette D. Jacobsen

Typing strains within a microbial species on the basis of DNA sequences at multiple loci has greatly advanced study of the epidemiology and evolutionary phylogenetics of many bacterial ([9][1], [40][2], [60][3], [72][4]) and fungal ([26][5], [68][6]) pathogens. Multilocus sequence typing (MLST)


Journal of Clinical Microbiology | 2007

Strain Typing and Determination of Population Structure of Candida krusei by Multilocus Sequence Typing

Mette D. Jacobsen; Neil Andrew Robert Gow; Martin C. J. Maiden; Duncan James Shaw; Frank C. Odds

ABSTRACT A multilocus sequence typing (MLST) scheme for Candida krusei was devised, based on sequencing of six gene fragments of the species. The existence of heterozygous results for each of the six fragments sequenced confirms that C. krusei is diploid for at least part of its genome. The C. krusei MLST scheme had a discriminatory index of 0.998, making this system ideal for strain typing of C. krusei clinical isolates. MLST data for 122 independent C. krusei isolates from a range of geographical sources were analyzed by eBURST, structure, and the unweighted-pair group method using average linkages to derive a population structure comprising four subtype strain clusters. There was no evidence of geographical associations with particular subtypes. Data for pairs of isolates from seven patients showed that each patient was colonized and/or infected with strain types that were indistinguishable by MLST. The C. krusei MLST database can be accessed online at http://pubmlst.org/ckrusei/ .


Medical Mycology | 2012

Combinatorial stresses kill pathogenic Candida species

Despoina Kaloriti; Anna Tillmann; Emily Cook; Mette D. Jacobsen; Tao You; Megan D. Lenardon; Lauren Ames; Mauricio Barahona; Komelapriya Chandrasekaran; George Macleod Coghill; Daniel Goodman; Neil A. R. Gow; Celso Grebogi; Hsueh-lui Ho; Piers J. Ingram; Andrew McDonagh; Alessandro P. S. de Moura; Wei Pang; Melanie Puttnam; Elahe Radmaneshfar; Maria Carmen Romano; Daniel Silk; Jaroslav Stark; Michael P. H. Stumpf; Marco Thiel; Thomas Thorne; Jane Usher; Zhikang Yin; Ken Haynes; Alistair J. P. Brown

Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts.

Collaboration


Dive into the Mette D. Jacobsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhikang Yin

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge