Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mette Jørgensen is active.

Publication


Featured researches published by Mette Jørgensen.


Nature | 2014

An atlas of active enhancers across human cell types and tissues

Robin Andersson; Claudia Gebhard; Irene Miguel-Escalada; Ilka Hoof; Jette Bornholdt; Mette Boyd; Yun Chen; Xiaobei Zhao; Christian Schmidl; Takahiro Suzuki; Evgenia Ntini; Erik Arner; Eivind Valen; Kang Li; Lucia Schwarzfischer; Dagmar Glatz; Johanna Raithel; Berit Lilje; Nicolas Rapin; Frederik Otzen Bagger; Mette Jørgensen; Peter Refsing Andersen; Nicolas Bertin; Owen J. L. Rackham; A. Maxwell Burroughs; J. Kenneth Baillie; Yuri Ishizu; Yuri Shimizu; Erina Furuhata; Shiori Maeda

Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.


Nature Structural & Molecular Biology | 2013

Polyadenylation site–induced decay of upstream transcripts enforces promoter directionality

Evgenia Ntini; Aino I Järvelin; Jette Bornholdt; Yun Chen; Mette Boyd; Mette Jørgensen; Robin Andersson; Ilka Hoof; Aleks Schein; Peter Refsing Andersen; Pia K. Andersen; Pascal Preker; Eivind Valen; Xiaobei Zhao; Vicent Pelechano; Lars M. Steinmetz; Albin Sandelin; Torben Heick Jensen

Active human promoters produce promoter-upstream transcripts (PROMPTs). Why these RNAs are coupled to decay, whereas their neighboring promoter-downstream mRNAs are not, is unknown. Here high-throughput sequencing demonstrates that PROMPTs generally initiate in the antisense direction closely upstream of the transcription start sites (TSSs) of their associated genes. PROMPT TSSs share features with mRNA-producing TSSs, including stalled RNA polymerase II (RNAPII) and the production of small TSS-associated RNAs. Notably, motif analyses around PROMPT 3′ ends reveal polyadenylation (pA)-like signals. Mutagenesis studies demonstrate that PROMPT pA signals are functional but linked to RNA degradation. Moreover, pA signals are under-represented in promoter-downstream versus promoter-upstream regions, thus allowing for more efficient RNAPII progress in the sense direction from gene promoters. We conclude that asymmetric sequence distribution around human gene promoters serves to provide a directional RNA output from an otherwise bidirectional transcription process.


Journal of Cell Biology | 2010

Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase

Halfdan Beck; Viola Nähse; Marie Sofie Yoo Larsen; Petra Groth; Trevor Clancy; Michael Lees; Mette Jørgensen; Thomas Helleday; Randi G. Syljuåsen; Claus Storgaard Sørensen

WEE1 and CHK1 jointly regulate Cdk activity to prevent DNA damage during replication.


Clinical Cancer Research | 2011

The Histone Methyltransferase and Putative Oncoprotein MMSET Is Overexpressed in a Large Variety of Human Tumors

Heidi Rye Hudlebusch; Eric Santoni-Rugiu; Ronald Simon; Elisabeth Ralfkiaer; Henrik H Rossing; Jens Vilstrup Johansen; Mette Jørgensen; Guido Sauter; Kristian Helin

Purpose: Multiple myeloma SET (Suppressor of variegation, Enhancer of zeste, and Trithorax) domain (MMSET) is a histone lysine methyltransferase deregulated in a subgroup of multiple myelomas with the t(4;14)(p16;q32) translocation and poor prognosis. With the aim of understanding, if MMSET can be involved in other types of cancer we investigated the expression of MMSET protein in different types of human tumors. Experimental Design: A monoclonal antibody against MMSET was developed and immunohistochemical staining of tissue microarrays (TMA) containing a large number of tumor samples (n = 3774) and corresponding normal tissues (n = 904) was carried out. Further validations of MMSET expression were carried out on independent, tumor-specific sets of TMAs for urinary bladder (n = 1293) and colon cancer (n = 1206) with corresponding clinicopathological data and long-term follow-up. Results: MMSET protein was highly expressed in different tumor types compared to normal counterparts. Particular frequent and/or high MMSET expression was found in carcinomas of the gastrointestinal tract (stomach, colon, anal canal), small cell lung carcinoma, tumors of the urinary bladder, female genitals, and skin. In bladder cancer, MMSET expression correlated with tumor aggressiveness. In contrast, MMSET expression was associated with good prognostic factors in colon cancer and was more pronounced in early stages of colon carcinogenesis (dysplasias) than in adenocarcinomas. However, colon cancer patients with high MMSET levels showed a worse 5-year survival. Conclusions: Our data suggest that MMSET has a broader role in cancer than previously anticipated, and further analysis might qualify it as a prognostic marker and a target for the development of therapy against several types of cancer. Clin Cancer Res; 17(9); 2919–33. ©2011 AACR.


BMC Genomics | 2011

Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites

Søren Fisker Schmidt; Mette Jørgensen; Yun Chen; Ronni Nielsen; Albin Sandelin; Susanne Mandrup

BackgroundThe transcription factors peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key transcriptional regulators of adipocyte differentiation and function. We and others have previously shown that binding sites of these two transcription factors show a high degree of overlap and are associated with the majority of genes upregulated during differentiation of murine 3T3-L1 adipocytes.ResultsHere we have mapped all binding sites of C/EBPα and PPARγ in human SGBS adipocytes and compared these with the genome-wide profiles from mouse adipocytes to systematically investigate what biological features correlate with retention of sites in orthologous regions between mouse and human. Despite a limited interspecies retention of binding sites, several biological features make sites more likely to be retained. First, co-binding of PPARγ and C/EBPα in mouse is the most powerful predictor of retention of the corresponding binding sites in human. Second, vicinity to genes highly upregulated during adipogenesis significantly increases retention. Third, the presence of C/EBPα consensus sites correlate with retention of both factors, indicating that C/EBPα facilitates recruitment of PPARγ. Fourth, retention correlates with overall sequence conservation within the binding regions independent of C/EBPα and PPARγ sequence patterns, indicating that other transcription factors work cooperatively with these two key transcription factors.ConclusionsThis study provides a comprehensive and systematic analysis of what biological features impact on retention of binding sites between human and mouse. Specifically, we show that the binding of C/EBPα and PPARγ in adipocytes have evolved in a highly interdependent manner, indicating a significant cooperativity between these two transcription factors.


Cancer Research | 2011

MMSET Is Highly Expressed and Associated with Aggressiveness in Neuroblastoma

Heidi Rye Hudlebusch; Julie Skotte; Eric Santoni-Rugiu; Zarah Glad Zimling; Michael Lees; Ronald Simon; Guido Sauter; Rossella Rota; Maria Antonietta De Ioris; Micaela Quarto; Jens Vilstrup Johansen; Mette Jørgensen; Catherine Rechnitzer; Lisa Leth Maroun; Henrik Daa Schrøder; Bodil Laub Petersen; Kristian Helin

MMSET (WHSC1/NSD2) is a SET domain-containing histone lysine methyltransferase the expression of which is deregulated in a subgroup of multiple myelomas with the t(4;14)(p16;q32) translocation associated with poor prognosis. Recent studies have shown that MMSET mRNA levels are increased in other tumor types as well. We have carried out immunohistochemical staining of tissue microarrays and found that MMSET protein is frequently and highly expressed in neuroblastoma (MMSET positive in 75% of neuroblastomas, n = 164). The expression level of MMSET in neuroblastomas was significantly associated with poor survival, negative prognostic factors, and metastatic disease. Moreover, a subset of neuroblastomas for which pre- and postchemotherapy biopsies were available displayed a strong decrease in MMSET protein levels after chemotherapy. In agreement with neuroblastomas becoming more differentiated after treatment, we show that retinoic acid-induced differentiation of human neuroblastoma cells in vitro also leads to a strong decrease in MMSET levels. Furthermore, we show that the high levels of MMSET in normal neural progenitor cells are strongly downregulated during differentiation. Importantly, we show that MMSET is required for proliferation of neuroblastoma cells and brain-derived neural stem cells. Taken together, our results suggest that MMSET is implicated in neuroblastomagenesis possibly by supporting proliferation of progenitor cells and negatively regulating their differentiation. In this respect, MMSET might be a strong candidate therapeutic target in a subset of neuroblastomas with unfavorable prognosis.


BMC Genomics | 2011

Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data.

Yun Chen; Mette Jørgensen; Xiaobei Zhao; Brian J. Parker; Eivind Valen; Jiayu Wen; Albin Sandelin

BackgroundInitiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models.ResultsHere, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS).As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling.ConclusionsIn this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.


Transcription | 2012

Cross-species ChIP-seq studies provide insights into regulatory strategies of PPARγ in adipocytes

Søren Fisker Schmidt; Mette Jørgensen; Albin Sandelin; Susanne Mandrup

Three recent studies have investigated interspecies retention of binding sites of peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipocyte differention, between mouse and human adipocytes. Here we discuss the major findings and demonstrate that retention of binding events is highly context-dependent.


Beneficial Microbes | 2017

Presence of Lactobacillus reuteri in saliva coincide with higher salivary IgA in young adults after intake of probiotic lozenges

Gabriella Braathen; Viktor Ingildsen; Svante Twetman; Dan Ericson; Mette Jørgensen

The aim of this study was to compare the concentration of salivary immunoglobulin A (IgA) and the selected interleukins (IL)-1β, IL-6, IL-8 and IL-10 in young individuals with presence and non-presence of Lactobacillus reuteri in saliva after a three-week intervention with probiotic lozenges. The study group consisted of 47 healthy individuals aged 18-32 years with no clinical signs of oral inflammation. In a randomised, double-blind, placebo-controlled, cross-over trial participants ingested two lozenges per day containing two strains of the probiotic bacterium L. reuteri or placebo lozenges. The intervention and wash-out periods were three weeks. Stimulated and unstimulated whole saliva was collected at baseline and immediately after termination of the intervention periods. The samples were analysed for total protein, salivary IgA and selected cytokines. In this extended analysis, data were collected by analysing baseline and follow-up saliva samples related to ingestion of the probiotic lozenges for the presence of L. reuteri through DNA-extraction, PCR-amplification and gel-electrophoresis. At baseline, 27% of the individuals displayed presence of L. reuteri and 42% were positive immediately after the three-week probiotic intervention. Individuals with presence of L. reuteri in saliva had significantly higher (P<0.05) concentrations of salivary IgA and %IgA/protein at the termination of the probiotic intake compared with non-presence. No differences in the cytokine levels were observed. In conclusion, detectable levels of L. reuteri in saliva coincided with higher concentrations of salivary IgA and %IgA/protein in stimulated whole saliva after the three-week daily intake of probiotic lozenges. Our findings suggest that monitoring the presence of probiotic candidates in the oral environment is important to interpret and understand their possible immune-modulating role in maintaining oral health.


conference on lasers and electro optics | 2013

Resonant filtered fiber amplifiers

Thomas Tanggaard Alkeskjold; Marko Laurila; Christina B. Olausson; Johannes Weirich; Jens K. Lyngsø; Danny Noordegraaf; Sidsel Petersen; Mette Jørgensen; Kristian Rymann Hansen; Jesper Lagsgaard; Martin D. Maack

In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifiers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation of Yb-doped amplifiers.

Collaboration


Dive into the Mette Jørgensen's collaboration.

Top Co-Authors

Avatar

Albin Sandelin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Yun Chen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Xiaobei Zhao

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina B. Olausson

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Eric Santoni-Rugiu

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge