Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mette Munk Jensen is active.

Publication


Featured researches published by Mette Munk Jensen.


BMC Medical Imaging | 2008

Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper

Mette Munk Jensen; Jesper Jørgensen; Tina Binderup; Andreas Kjær

BackgroundIn animal studies tumor size is used to assess responses to anticancer therapy. Current standard for volumetric measurement of xenografted tumors is by external caliper, a method often affected by error. The aim of the present study was to evaluate if microCT gives more accurate and reproducible measures of tumor size in mice compared with caliper measurements. Furthermore, we evaluated the accuracy of tumor volume determined from 18F-fluorodeoxyglucose (18F-FDG) PET.MethodsSubcutaneously implanted human breast adenocarcinoma cells in NMRI nude mice served as tumor model. Tumor volume (n = 20) was determined in vivo by external caliper, microCT and 18F-FDG-PET and subsequently reference volume was determined ex vivo. Intra-observer reproducibility of the microCT and caliper methods were determined by acquiring 10 repeated volume measurements. Volumes of a group of tumors (n = 10) were determined independently by two observers to assess inter-observer variation.ResultsTumor volume measured by microCT, PET and caliper all correlated with reference volume. No significant bias of microCT measurements compared with the reference was found, whereas both PET and caliper had systematic bias compared to reference volume. Coefficients of variation for intra-observer variation were 7% and 14% for microCT and caliper measurements, respectively. Regression coefficients between observers were 0.97 for microCT and 0.91 for caliper measurements.ConclusionMicroCT was more accurate than both caliper and 18F-FDG-PET for in vivo volumetric measurements of subcutaneous tumors in mice.18F-FDG-PET was considered unsuitable for determination of tumor size. External caliper were inaccurate and encumbered with a significant and size dependent bias. MicroCT was also the most reproducible of the methods.


The Journal of Nuclear Medicine | 2012

Quantitative PET of Human Urokinase-Type Plasminogen Activator Receptor with 64Cu-DOTA-AE105: Implications for Visualizing Cancer Invasion

Morten Persson; Jacob Madsen; Søren Dinesen Østergaard; Mette Munk Jensen; Jesper Jørgensen; Karina Juhl; Charlotte Lehmann; Michael Ploug; Andreas Kjær

Expression levels of the urokinase-type plasminogen activator receptor (uPAR) represent an established biomarker for poor prognosis in a variety of human cancers. The objective of the present study was to explore whether noninvasive PET can be used to perform a quantitative assessment of expression levels of uPAR across different human cancer xenograft models in mice and to illustrate the clinical potential of uPAR PET in future settings for individualized therapy. Methods: To accomplish our objective, a linear, high-affinity uPAR peptide antagonist, AE105, was conjugated with DOTA and labeled with 64Cu (64Cu-DOTA-AE105). Small-animal PET was performed in 3 human cancer xenograft mice models, expressing different levels of human uPAR, and the tumor uptake was correlated with the uPAR expression level determined by uPAR enzyme-linked immunosorbent assay. The tumor uptake pattern of this tracer was furthermore compared with 18F-FDG uptake, and finally the correlation between sensitivity toward 5-fluorouracil therapy and uPAR expression level was investigated. Results: The uPAR-targeting PET tracer was produced in high purity and with high specific radioactivity. A significant correlation between tumor uptake of 64Cu-DOTA-AE105 and uPAR expression was found (R2 = 0.73; P < 0.0001) across 3 cancer xenografts, thus providing a strong argument for specificity. A significantly different uptake pattern of 64Cu-DOTA-AE105, compared with that of 18F-FDG, was observed, thus emphasizing the additional information that can be obtained on tumor biology using 64Cu-DOTA-AE105 PET. Furthermore, a significant correlation between baseline uPAR expression and sensitivity toward 5-fluorouracil was revealed, thus illustrating the possible potentials of uPAR PET in a clinical setting. Conclusion: Our results clearly demonstrate that the peptide-based PET tracer 64Cu-DOTA-AE105 enables the noninvasive quantification of uPAR expression in tumors in vivo, thus emphasizing its potential use in a clinical setting to detect invasive cancer foci and for individualized cancer therapy.


PLOS ONE | 2012

18F-FDG PET Imaging of Murine Atherosclerosis: Association with Gene Expression of Key Molecular Markers

Anne Mette Fisker Hag; Sune Pedersen; Christina Christoffersen; Tina Binderup; Mette Munk Jensen; Jesper Jørgensen; Dorthe Skovgaard; Rasmus Sejersten Ripa; Andreas Kjær

Aim To study whether 18F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between 18F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE−/− mice. Methods Nine groups of apoE−/− mice were given normal chow or high-fat diet. At different time-points, 18F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif) ligand 1 (CXCL-1), monocyte chemoattractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, cluster of differentiation molecule (CD)-68, osteopontin (OPN), lectin-like oxidized LDL-receptor (LOX)-1, hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGF), and tissue factor (TF) was measured by means of qPCR. Results The uptake of 18F-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with 18F-FDG uptake. The strongest correlation was seen with TF and CD68 (p<0.001). A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of 18F-FDG. Together they could explain 60% of the 18F-FDG uptake. Conclusion We have demonstrated that 18F-FDG can be used to follow the progression of atherosclerosis in apoE−/− mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of 18F-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.


PLOS ONE | 2010

Early Detection of Response to Experimental Chemotherapeutic Top216 with [18F]FLT and [18F]FDG PET in Human Ovary Cancer Xenografts in Mice

Mette Munk Jensen; Kamille Dumong Erichsen; Fredrik Björkling; Jacob Madsen; Peter Buhl Jensen; Liselotte Højgaard; Maxwell Sehested; Andreas Kjær

Background 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use 18F-FLT positron emission tomography (PET) to study treatment responses to a new anti-cancer compound. To do so, we studied early anti-proliferative effects of the experimental chemotherapy Top216 non-invasively by PET. Methodology/Principal Findings In vivo uptake of 18F-FLT in human ovary cancer xenografts in mice (A2780) was studied at various time points after Top216 treatment (50 mg/kg i.v. at 0 and 48 hours) was initiated. Baseline 18F-FLT scans were made before either Top216 (n = 7–10) or vehicle (n = 5–7) was injected and repeated after 2 and 6 hours and 1 and 5 days of treatment. A parallel study was made with 2′-deoxy-2′-[18F]fluoro-D-glucose (18F-FDG) (n = 8). Tracer uptake was quantified using small animal PET/CT. Imaging results were validated by tumor volume changes and gene-expression of Ki67 and TK1. Top216 (50 mg/kg 0 and 48 hours) inhibited the growth of the A2780 tumor compared to the control group (P<0.001). 18F-FLT uptake decreased significantly at 2 hours (−52%; P<0.001), 6 hours (−49%; P = 0.002) and Day 1 (−47%; P<0.001) after Top216 treatment. At Day 5 18F-FLT uptake was comparable to uptake in the control group. Uptake of 18F-FLT was unchanged in the control group during the experiment. In the treatment group, uptake of 18F-FDG was significantly decreased at 6 hours (−21%; P = 0.003), Day 1 (−29%; P<0.001) and Day 5 (−19%; P = 0.05) compared to baseline. Conclusions/Significance One injection with Top216 initiated a fast and significant decrease in cell-proliferation assessable by 18F-FLT after 2 hours. The early reductions in tumor cell proliferation preceded changes in tumor size. Our data indicate that 18F-FLT PET is promising for the early non-invasive assessment of chemotherapy effects in both drug development and for tailoring therapy in patients.


PLOS ONE | 2013

[18F]FLT and [18F]FDG PET for non-invasive treatment monitoring of the nicotinamide phosphoribosyltransferase inhibitor APO866 in human xenografts.

Mette Munk Jensen; Kamille Dumong Erichsen; Camilla Bardram Johnbeck; Fredrik Björkling; Jacob Madsen; Michael Bzorek; Peter Buhl Jensen; Liselotte Højgaard; Maxwell Sehested; Andreas Kjær

Introduction APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of this study was non-invasively to study effect of APO866 treatment on [18F]FLT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake. Methods In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) was studied at various time points after APO866 treatment. Baseline [18F]FLT or [18F]FDG scans were made before treatment and repeated after 24 hours, 48 hours and 7 days. Tumor volume was followed with computed tomography (CT). Tracer uptake was quantified using small animal PET/CT. One hour after iv injection of tracer, static PET scans were performed. Imaging results were compared with Ki67 immunohistochemistry. Results Tumors treated with APO866 had volumes that were 114% (24 h), 128% (48 h) and 130% (Day 7) relative to baseline volumes at Day 0. In the control group tumor volumes were 118% (24 h), 145% (48 h) and 339% (Day 7) relative to baseline volumes Day 0. Tumor volume between the treatment and control group was significantly different at Day 7 (P = 0.001). Compared to baseline, [18F]FLT SUVmax was significantly different at 24 h (P<0.001), 48 h (P<0.001) and Day 7 (P<0.001) in the APO866 group. Compared to baseline, [18F]FDG SUVmax was significantly different at Day 7 (P = 0.005) in the APO866 group. Conclusions APO866 treatment caused a significant decrease in [18F]FLT uptake 24 and 48 hours after treatment initiation. The early reductions in tumor cell proliferation preceded decrease in tumor volume. The results show the possibility to use [18F]FLT and [18F]FDG to image treatment effect early following treatment with APO866 in future clinical studies.


PLOS ONE | 2014

18F-FDG and 18F-FLT-PET Imaging for Monitoring Everolimus Effect on Tumor-Growth in Neuroendocrine Tumors: Studies in Human Tumor Xenografts in Mice

Camilla Bardram Johnbeck; Mette Munk Jensen; Carsten H. Nielsen; Anne Mette Fisker Hag; Ulrich Knigge; Andreas Kjær

Introduction The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors and evaluated the performance of 18F-FDG and the proliferation tracer 18F-FLT for treatment response assessment by PET imaging. Methods The effect of everolimus on the human carcinoid cell line H727 was examined in vitro with the MTT assay and in vivo on H727 xenograft tumors. The mice were scanned at baseline with 18F-FDG or 18F-FLT and then treated with either placebo or everolimus (5 mg/kg daily) for 10 days. PET/CT scans were repeated at day 1,3 and 10. Results Everolimus showed significant inhibition of H727 cell proliferation in vitro at concentrations above 1 nM. In vivo tumor volumes measured relative to baseline were significantly lower in the everolimus group compared to the control group at day 3 (126±6% vs. 152±6%; p = 0.016), day 7 (164±7% vs. 226±13%; p<0.001) and at day 10 (194±10% vs. 281±18%; p<0.001). Uptake of 18F-FDG and 18F-FLT showed little differences between control and treatment groups, but individual mean uptake of 18F-FDG at day 3 correlated with tumor growth day 10 (r2 = 0.45; P = 0.034), 18F-FLT mean uptake at day 1 correlated with tumor growth day 7 (r2 = 0.63; P = 0.019) and at day 3 18F-FLT correlated with tumor growth day 7 (r2 = 0.87; P<0.001) and day 10 (r2 = 0.58; P = 0.027). Conclusion Everolimus was effective in vitro and in vivo in human xenografts lung carcinoid NETs and especially early 18F-FLT uptake predicted subsequent tumor growth. We suggest that 18F-FLT PET can be used for tailoring therapy for neuroendocrine tumor patients through early identification of responders and non-responders.


PLOS ONE | 2013

Imaging of Treatment Response to the Combination of Carboplatin and Paclitaxel in Human Ovarian Cancer Xenograft Tumors in Mice Using FDG and FLT PET

Mette Munk Jensen; Kamille Dumong Erichsen; Fredrik Björkling; Jacob Madsen; Peter Buhl Jensen; Maxwell Sehested; Liselotte Højgaard; Andreas Kjær

Introduction A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel. Methods In vivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2. Results Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08). Conclusions Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.


The Journal of Nuclear Medicine | 2016

PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-labeled Active Site Inhibited Factor VII

Carsten H. Nielsen; Troels E. Jeppesen; Lotte K. Kristensen; Mette Munk Jensen; El Ali Hh; Jacob Madsen; Bo Wiinberg; Lars C. Petersen; Andreas Kjær

Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%–89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site–inhibited FVII (FVIIai) labeled with 64Cu for PET imaging of TF expression. Methods: FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with 64Cu (64Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of 64Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with 64Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using 64Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Results: Longitudinal PET imaging with 64Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor–to–normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with the TF level evaluated by TF immunohistochemistry staining. Orthotopic tumors were clearly visible on the PET/MR images, and the uptake of 64Cu-NOTA-FVIIai was colocalized with viable tumor tissue. Conclusion: 64Cu-NOTA-FVIIai is well suited for PET imaging of tumor TF expression, and imaging is capable of distinguishing the TF expression level of various pancreatic tumor models.


Oncotarget | 2015

In vivo imaging of therapy response to a novel Pan-HER antibody mixture using FDG and FLT positron emission tomography

Carsten H. Nielsen; Mette Munk Jensen; Lotte K. Kristensen; Anna Dahlman; Camilla Fröhlich; Helle Jacobsen; Thomas T. Poulsen; Johan Lantto; Ivan D. Horak; Michael Kragh; Andreas Kjær

Purpose Overexpression of the human epidermal growth factor receptor (HER) family and their ligands plays an important role in many cancers. Targeting multiple members of the HER family simultaneously may increase the therapeutic efficacy. Here, we report the ability to image the therapeutic response obtained by targeting HER family members individually or simultaneously using the novel monoclonal antibody (mAb) mixture Pan-HER. Experimental design and results Mice with subcutaneous BxPC-3 pancreatic adenocarcinomas were divided into five groups receiving vehicle or mAb mixtures directed against either EGFR (HER1), HER2, HER3 or all three receptors combined by Pan-HER. Small animal positron emission tomography/computed tomography (PET/CT) with 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) and 3′-deoxy-3′-[18F]fluorothymidine (FLT) was performed at baseline and at day 1 or 2 after initiation of therapy. Changes in tumor uptake of tracers were quantified and compared to reduction in tumor size. Imaging results were further validated by immunohistochemistry and qPCR. Mean FDG and FLT uptake in the Pan-HER treated group decreased by 19±4.3% and 24±3.1%, respectively. The early change in FDG and FLT uptake correlated with tumor growth at day 23 relative to day 0. Ex vivo molecular analyses of markers associated with the mechanisms of FDG and FLT uptake confirmed the in vivo imaging results. Conclusions Taken together, the study supports the use of FDG and FLT as imaging biomarkers of early response to Pan-HER therapy. FDG and FLT PET/CT imaging should be considered as imaging biomarkers in clinical evaluation of the Pan-HER mAb mixture.


PLOS ONE | 2012

(18F)FLT PET for Non-Invasive Assessment of Tumor Sensitivity to Chemotherapy: Studies with Experimental Chemotherapy TP202377 in Human Cancer Xenografts in Mice

Mette Munk Jensen; Kamille Dumong Erichsen; Fredrik Björkling; Jacob Madsen; Peter Buhl Jensen; Maxwell Sehested; Liselotte Højgaard; Andreas Kjær

Aim 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use [18F]FLT positron emission tomography (PET) to study non-invasively early anti-proliferative effects of the experimental chemotherapeutic agent TP202377 in both sensitive and resistant tumors. Methods Xenografts in mice from 3 human cancer cell lines were used: the TP202377 sensitive A2780 ovary cancer cell line (n = 8–16 tumors/group), the induced resistant A2780/Top216 cell line (n = 8–12 tumors/group) and the natural resistant SW620 colon cancer cell line (n = 10 tumors/group). In vivo uptake of [18F]FLT was studied at baseline and repeated 6 hours, Day 1, and Day 6 after TP202377 treatment (40 mg/kg i.v.) was initiated. Tracer uptake was quantified using small animal PET/CT. Results TP202377 (40 mg/kg at 0 hours) caused growth inhibition at Day 6 in the sensitive A2780 tumor model compared to the control group (P<0.001). In the A2780 tumor model TP202377 treatment caused significant decrease in uptake of [18F]FLT at 6 hours (-46%; P<0.001) and Day 1 (-44%; P<0.001) after treatment start compared to baseline uptake. At Day 6 uptake was comparable to baseline. Treatment with TP202377 did not influence tumor growth or [18F]FLT uptake in the resistant A2780/Top216 and SW620 tumor models. In all control groups uptake of [18F]FLT did not change. Ki67 gene expression paralleled [18F]FLT uptake. Conclusion Treatment of A2780 xenografts in mice with TP202377 (single dose i.v.) caused a significant decrease in cell proliferation assessed by [18F]FLT PET after 6 hours. Inhibition persisted at Day 1; however, cell proliferation had returned to baseline at Day 6. In the resistant A2780/Top216 and SW620 tumor models uptake of [18F]FLT did not change after treatment. With [18F]FLT PET it was possible to distinguish non-invasively between sensitive and resistant tumors already 6 hours after treatment initiation.

Collaboration


Dive into the Mette Munk Jensen's collaboration.

Top Co-Authors

Avatar

Andreas Kjær

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jacob Madsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge