Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mette Voldby Larsen is active.

Publication


Featured researches published by Mette Voldby Larsen.


Journal of Antimicrobial Chemotherapy | 2012

Identification of acquired antimicrobial resistance genes

Ea Zankari; Henrik Hasman; Salvatore Cosentino; Martin Vestergaard; Simon Rasmussen; Ole Lund; Frank Møller Aarestrup; Mette Voldby Larsen

Objectives Identification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data. Methods We developed a web-based method, ResFinder that uses BLAST for identification of acquired antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de-novo-sequenced isolates. Results When testing the 1862 GenBank files, the method identified the resistance genes with an ID = 100% (100% identity) to the genes in ResFinder. Agreement between in silico predictions and phenotypic testing was found when the method was further tested on 23 isolates of five different bacterial species, with available phenotypes. Furthermore, ResFinder was evaluated on WGS chromosomes and plasmids of 30 isolates. Seven of these isolates were annotated to have antimicrobial resistance, and in all cases, annotations were compatible with the ResFinder results. Conclusions A web server providing a convenient way of identifying acquired antimicrobial resistance genes in completely sequenced isolates was created. ResFinder can be accessed at www.genomicepidemiology.org. ResFinder will continuously be updated as new resistance genes are identified.


Antimicrobial Agents and Chemotherapy | 2014

In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing

Alessandra Carattoli; Ea Zankari; Aurora García-Fernández; Mette Voldby Larsen; Ole Lund; Laura Villa; Frank Møller Aarestrup; Henrik Hasman

ABSTRACT In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S. Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.


Journal of Clinical Microbiology | 2012

Multilocus Sequence Typing of Total Genome Sequenced Bacteria

Mette Voldby Larsen; Salvatore Cosentino; Simon Rasmussen; Carsten Friis; Henrik Hasman; Rasmus Lykke Marvig; Lars Jelsbak; Thomas Sicheritz-Pontén; David W. Ussery; Frank Møller Aarestrup; Ole Lund

ABSTRACT Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.


European Journal of Immunology | 2005

An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions

Mette Voldby Larsen; Claus Lundegaard; Kasper Lamberth; Søren Buus; Søren Brunak; Ole Lund; Morten Nielsen

Reverse immunogenetic approaches attempt to optimize the selection of candidate epitopes, and thus minimize the experimental effort needed to identify new epitopes. When predicting cytotoxic T cell epitopes, the main focus has been on the highly specific MHC class I binding event. Methods have also been developed for predicting the antigen‐processing steps preceding MHC class I binding, including proteasomal cleavage and transporter associated with antigen processing (TAP) transport efficiency. Here, we use a dataset obtained from the SYFPEITHI database to show that a method integrating predictions of MHC class I binding affinity, TAP transport efficiency, and C‐terminal proteasomal cleavage outperforms any of the individual methods. Using an independent evaluation dataset of HIV epitopes from the Los Alamos database, the validity of the integrated method is confirmed. The performance of the integrated method is found to be significantly higher than that of the two publicly available prediction methods BIMAS and SYFPEITHI. To identify 85% of the epitopes in the HIV dataset, 9% and 10% of all possible nonamers in the HIV proteins must be tested when using the BIMAS and SYFPEITHI methods, respectively, for the selection of candidate epitopes. This number is reduced to 7% when using the integrated method. In practical terms, this means that the experimental effort needed to identify an epitope in a hypothetical protein with 85% probability is reduced by 20–30% when using the integrated method.


BMC Bioinformatics | 2007

Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

Mette Voldby Larsen; Claus Lundegaard; Kasper Lamberth; Søren Buus; Ole Lund; Morten Nielsen

BackgroundReliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein. It does so by integrating predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity. At least four other methods have been developed recently that likewise attempt to predict CTL epitopes: EpiJen, MAPPP, MHC-pathway, and WAPP. In order to compare the performance of prediction methods, objective benchmarks and standardized performance measures are needed. Here, we develop such large-scale benchmark and corresponding performance measures and report the performance of an updated version 1.2 of NetCTL in comparison with the four other methods.ResultsWe define a number of performance measures that can handle the different types of output data from the five methods. We use two evaluation datasets consisting of known HIV CTL epitopes and their source proteins. The source proteins are split into all possible 9 mers and except for annotated epitopes; all other 9 mers are considered non-epitopes. In the RANK measure, we compare two methods at a time and count how often each of the methods rank the epitope highest. In another measure, we find the specificity of the methods at three predefined sensitivity values. Lastly, for each method, we calculate the percentage of known epitopes that rank within the 5% peptides with the highest predicted score.ConclusionNetCTL-1.2 is demonstrated to have a higher predictive performance than EpiJen, MAPPP, MHC-pathway, and WAPP on all performance measures. The higher performance of NetCTL-1.2 as compared to EpiJen and MHC-pathway is, however, not statistically significant on all measures. In the large-scale benchmark calculation consisting of 216 known HIV epitopes covering all 12 recognized HLA supertypes, the NetCTL-1.2 method was shown to have a sensitivity among the 5% top-scoring peptides above 0.72. On this dataset, the best of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2 method is available at http://www.cbs.dtu.dk/services/NetCTL.All used datasets are available at http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php.


Journal of Antimicrobial Chemotherapy | 2013

Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing

Ea Zankari; Henrik Hasman; Rolf Sommer Kaas; Anne Mette Seyfarth; Yvonne Agersø; Ole Lund; Mette Voldby Larsen; Frank Møller Aarestrup

OBJECTIVES Antimicrobial susceptibility testing of bacterial isolates is essential for clinical diagnosis, to detect emerging problems and to guide empirical treatment. Current phenotypic procedures are sometimes associated with mistakes and may require further genetic testing. Whole-genome sequencing (WGS) may soon be within reach even for routine surveillance and clinical diagnostics. The aim of this study was to evaluate WGS as a routine tool for surveillance of antimicrobial resistance compared with current phenotypic procedures. METHODS Antimicrobial susceptibility tests were performed on 200 isolates originating from Danish pigs, covering four bacterial species. Genomic DNA was purified from all isolates and sequenced as paired-end reads on the Illumina platform. The web servers ResFinder and MLST (www.genomicepidemiology.org) were used to identify acquired antimicrobial resistance genes and MLST types (where MLST stands for multilocus sequence typing). ResFinder results were compared with phenotypic antimicrobial susceptibility testing results using EUCAST epidemiological cut-off values and MLST types. RESULTS A total of 3051 different phenotypic tests were performed; 482 led to the categorizing of isolates as resistant and 2569 as susceptible. Seven cases of disagreement between tested and predicted susceptibility were observed, six of which were related to spectinomycin resistance in Escherichia coli. Correlation between MLST type and resistance profiles was only observed in Salmonella Typhimurium, where isolates belonging to sequence type (ST) 34 were more resistant than ST19 isolates. CONCLUSIONS High concordance (99.74%) between phenotypic and predicted antimicrobial susceptibility was observed. Thus, antimicrobial resistance testing based on WGS is an alternative to conventional phenotypic methods.


Immunogenetics | 2010

NetCTLpan: pan-specific MHC class I pathway epitope predictions

Thomas Stranzl; Mette Voldby Larsen; Claus Lundegaard; Morten Nielsen

Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/.


PLOS ONE | 2013

PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data

Salvatore Cosentino; Mette Voldby Larsen; Frank Møller Aarestrup; Ole Lund

Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The method relies on groups of proteins, created without regard to their annotated function or known involvement in pathogenicity. The method has been built to work with all taxonomic groups of bacteria and using the entire training-set, achieved an accuracy of 88.6% on an independent test-set, by correctly classifying 398 out of 449 completely sequenced bacteria. The approach here proposed is not biased on sets of genes known to be associated with pathogenicity, thus the approach could aid the discovery of novel pathogenicity factors. Furthermore the pathogenicity prediction web-server could be used to isolate the potential pathogenic features of both known and unknown strains.


Journal of Immunology | 2008

Broadly Immunogenic HLA Class I Supertype-Restricted Elite CTL Epitopes Recognized in a Diverse Population Infected with Different HIV-1 Subtypes

Carina L. Pérez; Mette Voldby Larsen; Rasmus Gustafsson; Melissa M. Norström; Ann Atlas; Douglas F. Nixon; Morten Nielsen; Ole Lund; Annika C. Karlsson

The genetic variations of the HIV-1 virus and its human host constitute major obstacles for obtaining potent HIV-1-specific CTL responses in individuals of diverse ethnic backgrounds infected with different HIV-1 variants. In this study, we developed and used a novel algorithm to select 184 predicted epitopes representing seven different HLA class I supertypes that together constitute a broad coverage of the different HIV-1 strains as well as the human HLA alleles. Of the tested 184 HLA class I-restricted epitopes, 114 were recognized by at least one study subject, and 45 were novel epitopes, not previously described in the HIV-1 immunology database. In addition, we identified 21 “elite” epitopes that induced CTL responses in at least 4 of the 31 patients. A majority (27 of 31) of the study population recognized one or more of these highly immunogenic epitopes. We also found a limited set of 9 epitopes that together induced HIV-1-specific CTL responses in all HIV-1-responsive patients in this study. Our results have important implications for the validation of potent CTL responses and show that the goal for a vaccine candidate in inducing broadly reactive CTL immune responses is attainable.


Journal of Clinical Microbiology | 2014

Benchmarking of Methods for Genomic Taxonomy

Mette Voldby Larsen; Salvatore Cosentino; Oksana Lukjancenko; Dhany Saputra; Simon Rasmussen; Henrik Hasman; Thomas Sicheritz-Pontén; Frank Møller Aarestrup; David W. Ussery; Ole Lund

ABSTRACT One of the first issues that emerges when a prokaryotic organism of interest is encountered is the question of what it is—that is, which species it is. The 16S rRNA gene formed the basis of the first method for sequence-based taxonomy and has had a tremendous impact on the field of microbiology. Nevertheless, the method has been found to have a number of shortcomings. In the current study, we trained and benchmarked five methods for whole-genome sequence-based prokaryotic species identification on a common data set of complete genomes: (i) SpeciesFinder, which is based on the complete 16S rRNA gene; (ii) Reads2Type that searches for species-specific 50-mers in either the 16S rRNA gene or the gyrB gene (for the Enterobacteraceae family); (iii) the ribosomal multilocus sequence typing (rMLST) method that samples up to 53 ribosomal genes; (iv) TaxonomyFinder, which is based on species-specific functional protein domain profiles; and finally (v) KmerFinder, which examines the number of cooccurring k-mers (substrings of k nucleotides in DNA sequence data). The performances of the methods were subsequently evaluated on three data sets of short sequence reads or draft genomes from public databases. In total, the evaluation sets constituted sequence data from more than 11,000 isolates covering 159 genera and 243 species. Our results indicate that methods that sample only chromosomal, core genes have difficulties in distinguishing closely related species which only recently diverged. The KmerFinder method had the overall highest accuracy and correctly identified from 93% to 97% of the isolates in the evaluations sets.

Collaboration


Dive into the Mette Voldby Larsen's collaboration.

Top Co-Authors

Avatar

Ole Lund

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Morten Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Frank Møller Aarestrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Buus

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Anette Stryhn

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Claus Lundegaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oksana Lukjancenko

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Salvatore Cosentino

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge